
AIQC

Team AIQC

Aug 09, 2023





GETTING STARTED

1 Install 1
1.1 AIQC Python Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Location of AIQC Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Optional - Deleting the Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 UI 7
2.1 Experiment Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Compare Models Head-to-Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 What-If Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Run the App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 What about JupyterDash? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 API 9
3.1 Declarative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 1. Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 2. Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 3. Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 ORM 17
4.1 Object-Relational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 0. BaseModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 2. Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 3. Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 4. Interpolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7 5. Encode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.8 6. Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.9 7. Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.10 8. Splitset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.11 9. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.12 10. Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.13 11. Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.14 12. Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.15 13. Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.16 14. Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.17 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Datasets 61

i



5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Prepackaged Local Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Remote Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 Alternative Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Evaluation 67
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Deep Learning 101 79

8 Open Source 91
8.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2 How can I get involved? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.3 How can I contribute? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.4 Setting up dev environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.5 Programming style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.6 Code of conduct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.7 Guild bylaws (aka governance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.8 AIQC, Inc. is open core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.9 Open source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9 Competition 97

10 Mission 99
10.1 Why Does AIQC Exist? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.2 1. Accelerate science by making deep learning accessible. . . . . . . . . . . . . . . . . . . . . . . . 100
10.3 2. Bring the scientific method to data science. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.4 3. Break down walled gardens to keep science open. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

11 AIQC 103

ii



CHAPTER

ONE

INSTALL

1.1 AIQC Python Package

[ ]: pip install --upgrade pip
pip install --upgrade wheel
pip install --upgrade aiqc

If during troubleshooting you find yourself reinstalling unwanted packages from the cache, then use:

pip install --upgrade --no-cache-dir aiqc

If that doesn’t work, read the rest of this notebook (e.g. supported Python versions).

1



AIQC

1.2 Environment Setup

AIQC has many dependencies with specific versions, so we recommend creating a new virtual environment that is
solely dedicated to AIQC using either PyEnv or Conda.

1.2.1 Python Version

Requires Python 3+ (check your deep learning library’s Python requirements). AIQC was developed on Python 3.7.12
in order to ensure compatibility with Google Colab.

Conda does not provide 3.7.12, but AIQC has been tested on 3.7.16 as well so you can use that version.

Additionally, check the Python version required by the machine learning libraries that you intend to use. For exam-
ple, at the time this was written, Tensorflow/ Keras required Python 3.5–3.8. If you need more information about
dependencies, the PyPI setup.py is in the root of the github.com/aiqc/aiqc repository.

[1]: import sys
sys.version

[1]: '3.7.12 (default, Dec 10 2021, 10:49:04) \n[Clang 13.0.0 (clang-1300.0.29.3)]'

Pickle Disclaimer

AIQC, much like PyTorch, relies heavily on Pickle for saving Python objects in its database. Therefore, as a caveat
of Pickle, if you create objects in your aiqc.sqlite file using one version of Python and try to interact with it on
a newer version of Python, then you may find that pickle is no longer able to deserialize the object. For this reason,
sys.version and other helpful info about your OS/ Python version is stored in the config.json file at the time of
creation.

1.2.2 Operating System

AIQC was designed to be OS-agnostic. It has been tested on the following operating systems:

• macOS 10.15 and 11.6.1

• Linux (Ubuntu, Alpine, RHEL).

• Windows 10 (and WSL).

If you run into trouble with the installation process on your OS, please create a GitHub discussion so
that we can attempt to resolve, document, and release a fix as quickly as possible.

1.2.3 Optional - JupyterLab IDE

AIQC runs anywhere Python runs. We just like Jupyter for interactive visualization and data transformation. FYI,
jupyterlab is not an official dependency of the AIQC package.

[ ]: pip install jupyterlab

JupyterLab requires Node.js >= 10. Once all extensions switch to JupyterLab 3.0 prebuilding, this will no longer be
necessary.

2 Chapter 1. Install

https://docs.python.org/3/library/pickle.html


AIQC

[4]: !node -v

v14.7.0

1.2.4 Optional - Swap Space for Failover Memory

On local machines, it is good practice to configure “swap space.” This way, if your processes run out of memory/ RAM,
then the excess information will simply spill over onto the (potentially dynamically sized) swap partition of your hard
drive, as opposed to causing an out-of-memory crash. For GB sized datasets, spinning media HDDs (5,400/ 7,200
RPM) may be too slow for usage with swap, but you could get by with NVMe/ SSD.

1.3 Location of AIQC Files

AIQC makes use of the Python package, appdirs, for an operating system (OS) agnostic location to store configuration
and database files. This not only keeps your $HOME directory clean, but also helps prevent careless users from deleting
your database.

The installation process checks not only that the corresponding appdirs folder exists on your system but
also that you have the permissions neceessary to read from and write to that location. If these conditions
are not met, then you will be provided instructions during the installation about how to create the folder
and/ or grant yourself the appropriate permissions.

We have attempted to support both Windows (icacls permissions and backslashes C:\\) as well as
POSIX including Mac and Linux including containers & Google Colab (chmod letters permissions
and slashes /). Note: due to variations in the ordering of appdirs author and app directories in different
OS’, we do not make use of the appdirs appauthor directory, only the appname directory.

1.3.1 Location Based on OS

Test it for yourself:

import appdirs; appdirs.user_data_dir('aiqc');

• Mac: /Users/Username/Library/Application Support/aiqc

• Linux - Alpine and Ubuntu: /root/.local/share/aiqc

• Windows: C:\Users\Username\AppData\Local\aiqc

1.3.2 Database

The database is simply a SQLite file, and AIQC serves as an ORM/ API for that SQL database.

So you *do not* have to worry about anything like installing a database server, database client, database
users, configuring ports, configuring passwords/ secrets/ environment variables, or starting and restop-
ping the database. Shoutout to the ORM, peewee. Glad we found this fantastic and simple alternative to
SQLAlchemy.

1.3. Location of AIQC Files 3

http://docs.peewee-orm.com/en/latest/index.html


AIQC

1.3.3 Config

The configuration file contains low level information about: * Where AIQC should persist data. * Runtime (Python,
OS) environment for reproducibility and troubleshooting.

1.4 Optional - Deleting the Database

If, for whatever reason, you find that you need to destroy your SQLite database file and start from scratch, then you
can do so without having to manually find and rm the database file. In order to reduce the chance of an accident,
confirm:bool=False by default.

Bear in mind that if you are on either a server or shared OS, then this database may contain more than just
your data.

1.4.1 a) One-Liner

Both confirm:bool=False and rebuild:bool=False, so it only does what you command it to do.

[ ]: from aiqc.orm import create_db, destroy_db

[4]: destroy_db(confirm=True, rebuild=True)

=> Success - deleted database file at path:
/Users/layne/Library/Application Support/aiqc/aiqc.sqlite3

=> Success - created database file at path:
/Users/layne/Library/Application Support/aiqc/aiqc.sqlite3

Success - created all database tables.

1.4.2 b) Or Line-by-Line

[5]: destroy_db(confirm=True)

=> Success - deleted database file at path:
/Users/layne/Library/Application Support/aiqc/aiqc.sqlite3

[6]: create_db()

=> Success - created database file at path:
/Users/layne/Library/Application Support/aiqc/aiqc.sqlite3

(continues on next page)

4 Chapter 1. Install



AIQC

(continued from previous page)

Success - created all database tables.

1.5 Troubleshooting

1.5.1 Reloading the Package

After CRUD’ing the config files, AIQC needs the be reimported in order to detect those changes. This can be done in
one of three ways:

• If everything goes smoothly, it should automatically happen behind the scenes: reload(sys.
modules['aiqc']).

• Manually by the user: from importlib import reload; reload(aiqc).

• Manually restarting your Python kernel/ session and import aiqc.

1.5. Troubleshooting 5



AIQC

6 Chapter 1. Install



CHAPTER

TWO

UI

AIQC makes comparing and evaluating models effortless with its reactive Dash-Plotly user interface. The following
dashboards put precalculated metrics & charts for each split/fold of every model right at your fingertips.

Reference the Evaluation section for more information about the plots and metrics.

2.1 Experiment Tracker

During the training process, practitioners continually improve their algorithm by experimenting with different combi-
nations of architectures and parameters. This iterative process generates a lot of post-processing data, and it’s difficult
to figure out which model is the best just by staring at hundreds of rows of raw data.

2.2 Compare Models Head-to-Head

The head-to-head comparison provides a deep dive that helps tease out the answers to challenging questions:

How does a practitioner know that ‘model A’ is actually better than ‘model B’ for their use case? Is one
model slightly more biased than the other? What characteristics in the data is each model relying on? Can
we get higher performance if we train for just a bit longer?

2.3 What-If Analysis

Ever wonder “What if?” By providing a dynamic user inferface for inference, AIQC allows you to tweak the inputs for
a scenario in order to simulate its outcome.

Its applications are endless: Will the patient survive if their blood pressure drops? Will this drug be effective with 1
more rotational bond? Will the gene editing increase CO2 sequestration?

• By default, the feature inputs are populated with either the median numeric/ mode categoric value depending on
their dtype. Metadata about the feature’s distribution can be seen by hovering over the column name.

• If feature importance was enabled during model evaluation, then the feature columns are presented in rank-order
of median feature importance (as seen in the first row of the hover tooltip).

• The inputs are pre/post-processed via aiqc.mlops.Inference using the original model’s aiqc.mlops.Pipeline.

7

https://aiqc.medium.com/dash-is-deeper-than-dashboards-5ab7414f121e
evaluation.html


AIQC

• Clicking the star uses BaseModel.flip_star() to toggle Prediction.is_starred as a favorite indicator.

• Right now this page is only configured for supervised analysis (regression, binary classification, multi-label
classification) on tabular data. However, this foundation can easily be extended to support the other AIQC
data/analysis combinations.

2.4 Run the App

The app must be launched from the command line as a Python module.

$ python -m aiqc.ui.app

Dash is running on http://127.0.0.1:9991/

* Running on http://127.0.0.1:9991 (Press CTRL+C to quit)

If you attempt to terminate the server with CTRL+Z by accident, then the port will get hung. The freeport package makes
it easy to release the port in this case.

The --port int and --debug mode are configurable.

$ python -m aiqc.ui.app --help

usage: aiqc.ui.app [-h] [--port] [--debug] [--no-debug]

Launch AIQC's Dash-Plotly UI for experiment tracking
https://dash.plotly.com/devtools

optional arguments:
-h, --help show this help message and exit
--port localhost:<port> to run on. Default=9991
--debug Raises errors and inspects callbacks.
--no-debug By default, neither raises errors nor inspects callbacks.

The page refreshes every 10 seconds.

If, for some reason, you find that your queries are taking longer than 10 seconds to finish, please start a
discussion: https://github.com/aiqc/AIQC/discussions

2.5 What about JupyterDash?

Initially, the UI was built around jupyter_dash, which enabled running the Dash app within either a JupyterLab cell
or tab. However, this approach was not stable for the following reasons:

• Hung & unkillable ports

• When _terminate_server_for_port was removed in v0.4.2, it became unusable.

• Werkzeug deprecation warnings

JupyterLab ships with a terminal. So technically the app can still be launched from within the JupyterLab user interface
without resorting to Pythonic sys commands.

8 Chapter 2. UI

https://pypi.org/project/freeport/
https://github.com/aiqc/AIQC/discussions
https://github.com/plotly/jupyter-dash/issues/33
https://github.com/plotly/jupyter-dash/issues/63


CHAPTER

THREE

API

3.1 Declarative

The High-Level API is declarative. What does that mean? All you have to do is specify the state that you want the data
in, and then the backend executes all of the tedious data wrangling needed to achieve that state. It’s like Terraform for
machine learning.

from aiqc.orm import Dataset
from aiqc.mlops import *

1. Pipeline declares how to preprocess data.

9



AIQC

2. Experiment declares variations of models to train and evaluate.

3. Inference declares new samples to predict.

Reference the tutorials to the see the high level API in action for various types of data and analysis. It’s declarative
nature makes it easy to learn by reading examples as opposed to piecing together which arguments point to each other.
Check back here if you get stuck.

Why so many pointer variables? – Under the hood, the High-Level API is actually chaining together a
workflow using the object-relational model (ORM) of the Low-Level API. Many of the classes provided
here are just an easier-to-use versions of their ORM counterparts.

3.2 1. Pipeline

Declares how to prepare data. The steps defined within the pipeline are used at multiple points in the machine learning
lifecycle:

• Preprocessing of training and evaluation data.

• Caching of preprocessed training and evaluation data.

• Post-processing (e.g. decoding) during model evaluation.

• Inference: encoding and decoding new data.

Pipeline(
inputs
, target
, stratifier
, name
, description

)

Argument Type Default Description
inputs list(Input) Re-

quired
Input - One or more featuresets

target Target None Target - Leave blank during unsupervised/ self-supervised analysis.
stratifier Stratifier None Stratifier - Leave blank during inference.
name str None An auto-incrementing version will be assigned to Pipelines that share a

name.
descrip-
tion

str None Describes how this particular workflow is unique.

It is possible for an Input and a Target to share the same Dataset. The Input.include_columns and
Input.exclude_columns will automatically be adjusted to exclude Target.column.

Returns Splitset instance as seen in the Low-Level API. We will use this later as the Trainer.pipeline argument.

10 Chapter 3. API

../pages/gallery.html
api_low_level.html
api_low_level.html#8.-Splitset


AIQC

3.2.1 1a. Input

These are the features that our model will learn from.

This is a wrapper for Feature and all of its preprocessors in the Low-Level API.

Input(
dataset
, exclude_columns
, include_columns
, interpolaters
, window
, encoders
, reshape_indices

)

Argument Type Default Description
dataset Dataset Re-

quired
Dataset from Low-Level API

ex-
clude_columns

list(str) None The columns from the Dataset that will not be used in the
featureset

in-
clude_columns

list(str) None The columns from the Dataset that will be used in the feature-
set

interpolaters list(Input.Interpolater) None Input.Interpolater
window Input.Window None Input.Window
encoders list(Input.Encoder) None Input.Encoder
re-
shape_indices

tuple(int/str/tuple) None Reference FeatureShaper from Low-Level API .

Both exclude_columns and include_columns cannot be used simultaneously.

1ai. Input.Interpolater

Used to fill in the blanks in a sequence.

This is a wrapper for FeatureInterpolater in the Low-Level API.

Input.Interpolater(
process_separately
, verbose
, interpolate_kwargs
, dtypes
, columns

)

3.2. 1. Pipeline 11

api_low_level.html#2.-Feature
api_low_level.html#1.-Dataset
api_low_level.html
api_low_level.html#4b.-FeatureInterpolater


AIQC

1aii. Input.Window

Used to slice and shift samples into many time series windows for walk-forward/ backward analysis.

This is a wrapper for Window in the Low-Level API.

Input.Window(
size_window
, size_shift
, record_shifted

)

1aiii. Input.Encoder

Used to numerically encode data.

This is a wrapper for FeatureCoder in the Low-Level API.

Input.Encoder(
sklearn_preprocess
, verbose
, include
, dtypes
, columns

)

3.2.2 1b. Target

What the model is trying to predict.

This is a wrapper for Label and all of its preprocessors in the Low-Level API.

Target(
dataset
, column
, interpolater
, encoder

)

Argument Type Default Description
dataset Dataset Required Dataset from Low-Level API
column list(str) None The column from the Dataset to use as the target.
interpolater Target.Interpolater None Target.Interpolater
encoder Target.Encoder None Target.Encoder

12 Chapter 3. API

api_low_level.html#7.-Window
api_low_level.html#5b.-FeatureCoder
api_low_level.html#3.-Label
api_low_level.html#1.-Dataset


AIQC

1bi. Target.Interpolater

Used to fill in the blanks in a sequence.

This is a wrapper for LabelInterpolater in the Low-Level API.

Target.Interpolater(
process_separately
, interpolate_kwargs

)

1bii. Target.Encoder

Used to numerically encode data.

This is a wrapper for LabelCoder in the Low-Level API.

Target.Encoder(
sklearn_preprocess

)

3.2.3 1c. Stratifier

Used to slice the dataset into training, validation, test, and/or cross-validated subsets.

This is a wrapper for Splitset in the Low-Level API.

Stratifier(
size_test
, size_validation
, fold_count
, bin_count

)

3.3 2. Experiment

Used to declare variations of models that will be trained.

Experiment(
architecture
, trainer

)

Argument Type Default Description
architecture Architecture Required Architecture
trainer Trainer Required Trainer

3.3. 2. Experiment 13

api_low_level.html#4a.-LabelInterpolater
api_low_level.html#5a.-LabelCoder
api_low_level.html#8.-Splitset


AIQC

Returns Queue instance as seen in the Low-Level API.

3.3.1 2a. Architecture

The model and hyperparameters to be trained.

This is a wrapper for Algorithm in the Low-Level API, with the addition of hyperparameters.

Architecture(
library
, analysis_type
, fn_build
, fn_train
, fn_optimize
, fn_lose
, fn_predict
, hyperparameters

)

3.3.2 2b. Trainer

The options used for training.

This is a wrapper for Queue in the Low-Level API, with the addition of pipeline.

Trainer(
pipeline
, repeat_count
, permute_count
, search_count
, search_percent

)

3.4 3. Inference

Used to preprocess new samples, run predictions on them, decode the output, and, optionally, evaluate the predictions.

Inference(
predictor
, input_datasets
, target_dataset
, record_shifted

)

14 Chapter 3. API

api_low_level.html#11.-Queue
api_low_level.html#9.-Algorithm
api_low_level.html#10.-Hyperparameters
api_low_level.html#11.-Queue


AIQC

Argument Type De-
fault

Description

predictor Predic-
tor

Re-
quired

Predictor to use for inference

in-
put_datasets

list(Dataset)Re-
quired

New Datasets to run inference on.

tar-
get_dataset

Dataset None New Datasets for scoring inference. Leave this blank for pure inference where
no metrics will be calculared.

record_shiftedbool False Set this to True for scoring during unsupervised time series inference

We don’t need to specify fully-fledged Inputs and Target objects because the Pipeline of the
predictor object will be reused in order to process these new datasets.

Returns Prediction instance as seen in the Low-Level API.

3.4. 3. Inference 15

api_low_level.html#13.-Predictor
api_low_level.html#1.-Dataset
api_low_level.html#1.-Dataset
api_low_level.html#14.-Prediction


AIQC

16 Chapter 3. API



CHAPTER

FOUR

ORM

4.1 Object-Relational Model

The Low-Level API is an object-relational model for machine learning. Each class in the ORM maps to a table in a
SQLite database that serves as a machine learning metastore.

The real power lies in the relationships between these objects (e.g. Label→Splitset←Feature and
Queue→Job→Predictor→Prediction), which enable us to construct rule-base protocols for various types of data
and analysis.

Goobye, X_train, y_test. Hello, object-oriented machine learning.

from aiqc.orm import *

Automatic ‘id’ method argument

If an ORM-based classes is instantiated, then any method called by the resulting object will automatically pass in the
object’s self.id in as its first positional argument:

queue = Queue.get_by_id(id)
queue.run_jobs()

However, if the class has not been instantiated, then the id is required:

17

http://docs.peewee-orm.com/en/latest/peewee/models.html


AIQC

Queue.run_jobs(id)

Although I did not design this pattern, if you think about it, it makes sense. ORMs␣
→˓allow you to fluidly traverse relational objects. If you had to check the ``object.
→˓id`` of everything you returned before interacting with it, then that would ruin the␣
→˓user-friendly experience.

4.2 0. BaseModel

The BaseModel class applies to all tables in the ORM. It’s metadata in the truest sense of the word.

Localized timestamps are handled by utils.config.timezone_now(). They are made human-readable via
strftime('%Y%b%d_%H:%M:%S')→ “2022Jun23_07:13:14”

4.2.1 0a. Methods

created_at()

Returns the creation timestamp in human-readable format.

updated_at()

Returns timestamp of the most recent update in human-readable format.

flip_star()

A way to toggle (favorite/ unfavorite) the is_starred attribute in order to make entries easy to find.

set_info()

Add descriptive information about an entry so that you remember why you created it

set_info(name, description)

Argument Type Default Description
name str None Short name to remember this entry by
description str None What is unique about this entry?

18 Chapter 4. ORM

https://github.com/aiqc/AIQC/blob/4743f8a36ca84dcebbf1b757c1969720bc15450b/aiqc/utils/config.py


AIQC

4.2.2 0b. Attributes

Attribute Type Description
id AutoField Auto-incrementing integer (1-based, not zero-based) PrimaryKey
time_created DateTime-

Field
Records a timestamp when the record is created

time_updated DateTime-
Field

Records a timestamp when the record is created. Overwritten every time the record
is updated.

is_starred Boolean-
Field

Used to indicated that the entry is a favorite

name CharField Short name to remember this entry by
description CharField What is unique about this entry?

4.3 1. Dataset

The Dataset class provides the following subclasses for working with different types of data:

Type Dimensional-
ity

Supported Formats Format (if in-
gested)

Tabular 2D Files (Parquet, CSV, TSV) / Pandas DataFrame (in-memory) Parquet
Se-
quence

3D NumPy (in-memory ndarray, npy file) npy

Image 4D NumPy (in-memory ndarray, npy file) / Pillow-supported for-
mats

npy

The names are merely suggestive, as the primary purpose of these subclasses is to provide a way to register
data of known dimensionality. For example, a practitioner could ingest many uni-channel/ grayscale images
as a 3D Sequence Dataset instead of a multi-channel 4D Image Dataset.

Why not 2D NumPy? The Dataset.Tabular class is intended for strict, column-specific dtypes and
Parquet persistence upon ingestion. In practice, this conflicted too often with NumPy’s array-wide dtyping.
We use the best tools for the job (df/pq for 2D) and (array/npy for ND).

4.3. 1. Dataset 19



AIQC

4.3.1 1a. Methods

1ai. Registration

Most of the Dataset registration methods share these arguments/ concepts:

Ar-
gu-
ment

Description

in-
gest

Determines if raw data is either stored directly inside the metastore or remains on disk to be accessed via
path/url. In-memory data like DataFrames and ndarrays must be ingested. Whereas file-based data like
Parquet, NPY, Image folders/urls may remain remote. Regardless of whether or not the raw data is ingested,
metadata is always derived from it by parsing: 2D via DataFrame and N-D via ndarray.

re-
name_columns

Useful for assigning column names to arrays or delimited files that would otherwise be unnamed.
len(rename_columns) must match the number of columns in the raw data. Normally, an int-based range
is assigned to unnamed columns. In this case, AIQC converts each column name to a string e.g. ‘1’ during
the registration process.

re-
type

Change the dtype of data using np.types. All Dataset subclasses support mass typing via np.type/ str(np.
type). Only the Tabular subclass supports inidividual column retyping via dict(column=str(np.
type)) ``. If ``rename_columns is used in conjuction with retype=dict(), then each
dict['column'] key must match its counterpart in rename_columns.

de-
scrip-
tion

What information does this dataset contain? What is unique about this dataset/ version – did you edit the
raw data, add rows, or change column names/ dtypes?

name Triggers dataset versioning. Datasets that share a name will be assigned an auto-incrementing version:
int number provided that they are not duplicates of each other based on a sha256_hexdigest:str hash.
If you try to create an exact duplicate, it will warn you and return the matching duplicate instead of creating
a new entity. This behavior makes it easy to rerun pipelines where Datasets are created inline.

Ingestion provides the following benefits, especially for entry-level users:

• Persist in-memory datasets (Pandas DataFrames, NumPy ndarrays).

• Keeps data coupled with the experiment in the portable SQLite file.

• Provides a more immutable and out-of-the-way storage location in comparison to a laptop file system.

• Encourages preserving tabular dtypes with the ecosystem-friendly Parquet format.

Why would I avoid ingestion?

• Happy with where the original data lives: e.g. S3 bucket.

• Don’t want to duplicate the data.

sha256? – It’s the one-way hash algorithm that GitHub aspires to upgrade to. AIQC runs it on com-
pressed data because it’s easier and probably less-error prone than intercepting the bytes of the fastparquet
intermediary tables before appending the Parquet magic bytes.

Is SQLite a legitimate datastore? – In many cases, SQLite queries are faster than accessing data via a
filesystem. It’s a stable, 22 year-old technology that serves as the default database for iOS e.g. Apple
Photos. AIQC uses it store raw data in byte format as a BlobField. I’ve stored tens-of-thousands of files in
it over several years and never experienced corruption. Keep in mind that AWS S3 is blob store, and the
Microsoft equivalent service is literally called Azure Blob Storage. The max size of a BlobField is 2GB,
so ~20GB after compression. Either way, the goal of machine learning isn’t to record the entire population
within the weights of a neural network, it’s to find subsets that are representative of the broader population.

20 Chapter 4. ORM

https://numpy.org/doc/stable/user/basics.types.html


AIQC

1ai1. Dataset.Tabular

Here are some of the ways practitioners can use this 2D structure:

Multiple subjects (1 row per sample) * Multi-variate 1D (1 col per attribute)
Single subject (1 row per timestamp) * Multi-variate 1D (1 col per attribute)
Multiple subjects (1 row per timestamp) * Uni-variate 0D (1 col per sample)

Tabular datasets may contain both features and labels

Dataset.Tabular.from_df()

dataset = Dataset.Tabular.from_df(
dataframe
, rename_columns
, retype
, description
, name

)

Argument Type De-
fault

Description

df DataFrame Re-
quired

pd.DataFrame with int-based single index. DataFrames are
always ingested.

re-
name_columns

list[str] None See Registration

retype np.type /
dict(column:np.type)

None See Registration

description str None See Registration
name str None See Registration

Dataset.Tabular.from_path()

Dataset.Tabular.from_path(
file_path
, ingest
, rename_columns
, retype
, header
, description
, name

)

4.3. 1. Dataset 21

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas-dataframe


AIQC

Argu-
ment

Type De-
fault

Description

file_path str Re-
quired

Parsed based on how the file name ends (.parquet, .tsv, .csv)

ingest bool True See Registration. Defaults to True because I don’t want to rely on CSV files
as a source of truth for dtypes, and compression works great in Parquet.

re-
name_columns

list[str] None See Registration

retype np.type /
dict(column:np.type)

None See Registration

header object None See Registration
descrip-
tion

str None See Registration

name str None See Registration

1ai2. Dataset.Sequence

Here are some of the ways practitioners can use this 3D structure:

Single subject (1 patient) * Multiple 2D sequences
Multiple subjects * Single 2D sequence

Sequence datasets are somewhat multi-modal in that, in order to perform supervised learning on them,
they must eventually be paired with a Dataset.Tabular that acts as its Label.

Dataset.Sequence.from_numpy()

Dataset.Sequence.from_numpy(
arr3D_or_npyPath
, ingest
, rename_columns
, retype
, description
, name

)

Argument Type De-
fault

Description

arr3D_or_npyPathobject / str Re-
quired

3D array in the form of either an ndarray or npy file path

ingest bool None See Registration. If left blank, ndarrays will be ingested and npy
will not. Errors if ndarray and False.

re-
name_columns

list[str] None See Registration

retype np.type /
dict(column:np.type)

None See Registration

description str None See Registration
name str None See Registration

22 Chapter 4. ORM

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html
https://numpy.org/doc/stable/reference/generated/numpy.save.html


AIQC

1ai3. Dataset.Image

Here are some of the ways you can practitioners this 4D structure:

Single subject (1 patient) * Multiple 3D images
Multiple subjects * Single 3D image

Users can ingest 4D data using either: - The Pillow library, which supports various formats - Or NumPy arrays as a
simple alternative

Image datasets are somewhat multi-modal in that, in order to perform supervised learning on them, they
must eventually be paired with a Dataset.Tabular that acts as its Label.

Dataset.Image.from_numpy()

Dataset.Image.from_numpy(
arr4D_or_npyPath
, ingest
, rename_columns
, retype
, description
, name

)

Argument Type De-
fault

Description

arr4D_or_npyPathobject / str Re-
quired

4D array in the form of either an ndarray or npy file path

ingest bool None See Registration. If left blank, ndarrays will be ingested and npy will
not. Errors if input is ndarray and ingest==False.

re-
name_columns

list[str] None See Registration

retype np.type /
dict(column:np.type)

None See Registration

descrip-
tion

str None See Registration

name str None See Registration

Dataset.Image.from_folder()

Dataset.Image.from_folder(
folder_path
, ingest
, rename_columns
, retype
, description

(continues on next page)

4.3. 1. Dataset 23

https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html
https://numpy.org/doc/stable/reference/generated/numpy.save.html


AIQC

(continued from previous page)

, name
)

Argument Type De-
fault

Description

folder_path str Re-
quired

Folder of images to be ingested via Pillow. All images must be
cropped to the same dimensions ahead of time.

ingest bool False See Registration
re-
name_columns

list[str] None See Registration

retype np.type /
dict(column:np.type)

None See Registration

descrip-
tion

str None See Registration

name str None See Registration

Dataset.Image.from_urls()

Dataset.Image.from_urls(
urls
, source_path
, ingest
, rename_columns
, retype
, description
, name

)

Argu-
ment

Type De-
fault

Description

urls list(str) Re-
quired

URLs that point to an image to be ingested via Pillow. All images must be
cropped to the same dimensions ahead of time.

source_pathstr None Optionally record a shared directory, bucket, or FTP site where images are
stored. The backend won’t use this information for anything.

ingest bool False See Registration
re-
name_columns

list[str] None See Registration

retype np.type /
dict(column:np.type)

None See Registration

descrip-
tion

str None See Registration

name str None See Registration

24 Chapter 4. ORM



AIQC

1aii. Fetch

The following methods are exposed to end-users in case they want to inspect the data that they have ingested.

Dataset.to_arr()

Argument Type Default Description
id int None The identifier of the Dataset of interest
columns list(str) None If left blank, includes all columns
samples list(int) None If left blank, includes all samples

Subclass Returns
Tabular ndarray.ndim==2
Sequence ndarray.ndim==3
Image ndarray.ndim==4

Dataset.to_df()

Argument Type Default Description
id int None The identifier of the Dataset of interest
columns list(str) None If left blank, includes all columns
samples list(int) None If left blank, includes all samples

Subclass Returns
Tabular DataFrame
Sequence list(DataFrame)
Image list(list(DataFrame))

Dataset.to_pillow()

Argument Type Default Description
id int None The identifier of the Dataset of interest
samples list(int) None If left blank, includes all samples

Subclass Returns
Image list(PIL.Image)

Dataset.get_dtypes()

Argument Type Default Description
id int None The identifier of the Dataset of interest
columns list(str) None If left blank, includes all columns

4.3. 1. Dataset 25



AIQC

Regardless of how the initial Dataset.dtypewas formatted [e.g. single np.type / str(np.type) / dict(column=np.type)],
this function intentionally returns then dtype of each column within a dict(column=str(np.type) format.

4.3.2 1b. Attributes

These are the fields in the Dataset table

At-
tribute

Type Description

typ CharFieldThe Dataset type: Tabular, Sequence, Image
source_formatCharFieldThe file format (Parquet, CSV, TSV) or in-memory class (DataFrame, ndarray)
source_pathCharFieldThe path of the original file/ folder
urls JSON-

Field
A list of URLs as an alternative to file paths/ folders

columns JSON-
Field

List of str-based names for each column

dtypes JSON-
Field

The type of each column. Tabular dtype is saved in dict(column=str(np.type))
`` format. Where Sequence and Image dtype is saved in a singular
``str(np.type)

shape JSON-
Field

Human-readable dictionary about the dimensions of the data e.g. samples:10, columns:5

sha256_hexdigestCharFieldA hash of the data to determine its uniqueness for versioning.
mem-
ory_MB

Inte-
gerField

Size of the dataset in megabytes when loaded into memory

con-
tains_nan

Boolean-
Field

Whether or not the dataset contains any blank cells

header Pick-
le-
Field

pd.read_csv(header) for TSV/CSV files.

is_ingested Boolean-
Field

Quick flag to see if the data was ingested. Exists to prevent querying the blob field unneces-
sarily.

blob Blob-
Field

The raw bytes of the data obtained via BytesIO().getvalue

version Inte-
gerField

The auto-incrementing version number assigned to unique datasets that share name

4.4 2. Feature

Determines the columns that will be used as predictive features during training. Columns is always the last dimension
shape[-1] of a dataset.

26 Chapter 4. ORM



AIQC

4.4.1 2a. Methods

Feature.from_dataset()

Feature.from_dataset(
dataset_id
, include_columns
, exclude_columns

)

Argument Type De-
fault

Description

dataset_id int Re-
quired

Dataset.id from which you want to derive Dataset.columns.

in-
clude_columns

list(str) None Specify columns that will be included in the Feature. All columns that are not
specified will not be included.

ex-
clude_columns

list(str) None Specify columns that will not be included in the Feature. All columns that are
not specified will be included.

If neither include_columns nor exclude_columns is defined, then all columns will be used.

Both include_columns and exclude_columns cannot be used at the same time

Fetch

Theses methods wrap Dataset’s fetch methods:

Method Arguments Returns
to_arr() id:int, columns:list(str)=Feature.c olumns, samples:list(int)=None ndarray 2D / 3D / 4D
to_df() id:int, columns:list(str)=Feature.c olumns, samples:list(int)=None df / list(df) / list(list(df))
get_dtypes() id:int, columns:list(str)=Feature.c olumns dict(column=str(np.type))

4.4.2 2b. Attributes

These are the fields in the Feature table

Attribute Type Description
columns JSON-

Field
The columns included in this featureset

columns_excludedJSON-
Field

The columns, if any, in the dataset that were not included

fit-
ted_featurecoders

Pickle-
Field

When FeatureCoder’s fit an sklearn preprocessor to these columns, the fit objects
are saved here for downstream inverse_transform’ing

dataset For-
eignKey-
Field

Where these columns came from

4.4. 2. Feature 27



AIQC

4.5 3. Label

Determines the column(s) that will be used as a target during supervised analysis. Do no create a Label if you intend
to conduct unsupervised/ self-supervised analysis.

4.5.1 3a. Methods

Label.from_dataset()

Label.from_dataset(
dataset_id
, columns

)

Ar-
gu-
ment

Type De-
fault

Description

dataset_idint Re-
quired

Dataset.id from which you want to derive Dataset.columns. Only Tabular Datasets may
be used as a Label.

columnslist(str)None Specify columns that will be included in the Label. If left blank, defaults to all columns. If
more than 1 column is provided, then the data in those columns must be in One-Hot Encoded
(OHE) format.

Fetch

Theses methods wrap Dataset’s fetch methods:

Method Arguments Returns
to_arr() id:int, columns:list(str)=Label.col umns, samples:list(int)=None ndarray 2D / 3D / 4D
to_df() id:int, columns:list(str)=Label.col umns, samples:list(int)=None df / list(df) / list(list(df))
get_dtypes() id:int, columns:list(str)=Label.col umns dict(column=str(np.type))

4.5.2 3b. Attributes

These are the fields in the Feature table

28 Chapter 4. ORM



AIQC

Attribute Type Description
columns JSON-

Field
The column(s) included in this featureset.

col-
umn_count

Inte-
gerField

The number of columns in the Label. Used to determine if it is in validated OHE format
or not

unique_classesJSON-
Field

Records all of the different values found in categorical columns. Not used for continuous
columns.

fit-
ted_labelcoder

Pickle-
Field

When a LabelCoder fit’s an sklearn preprocessor to these columns, the fit objects are
saved here for downstream inverse_transform’ing

dataset For-
eignKey-
Field

Where these columns came from

4.6 4. Interpolate

If you don’t have time series data then you do not need interpolation.

If you have continuous columns with missing data in a time series, then interpolation allows you to fill in those blanks
mathematically. It does so by fitting a curve to each column. Therefore each column passed to an interpolater must
satisfy: np.issubdtype(dtype, np.floating).

Interpolation is the first preprocessor because you need to fill in blanks prior to encoding.

pandas.DataFrame.interpolate

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.interpolate.html

Is utilized due to its ease of use, variety of methods, and support of sparse indices. However, it does not
follow the fit/transform pattern like many of the class-based sklearn preprocessors, so the interpolated
training data is concatenated with the evalaution split during the interpolation of evaluation splits.

Below are the default settings if interpolate_kwargs=None that get passed to df.interpolate(). In my experi-
ence, method=spline produces the best results. However, if either (a) spline fails to fit to your data, or (b) you know
that your pattern is linear - then try method=linear.

interpolate_kwargs = dict(
method = 'spline'
, limit_direction = 'both'
, limit_area = None
, axis = 0
, order = 1

)

Because the sample dimension is different for each Dataset Type, they approach interpolation differently.

4.6. 4. Interpolate 29

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.interpolate.html


AIQC

Dataset
Type

Approach

Tabu-
lar

Unlike encoders, there is no fit object. So first the training data rows are interpolated independently.
Then, when it comes time to interpolate other splits like validation, the training data is included in the
sequence to be interpolated.

Se-
quence

Interpolation is ran on each 2D sequence separately

Im-
age

Interpolation is ran on each 2D channel separately

4.6.1 4a. LabelInterpolater

Label is intended for a single column, so only 1 Interpolater will be used during Label.preprocess()

4ai. Methods

LabelInterpolater.from_label()

LabelInterpolater.from_label(
label_id
, process_separately
, interpolate_kwargs

)

Argument Type De-
fault

Description

label_id int Re-
quired

Points to the Label.columns to use

pro-
cess_separately

bool True Used to restrict the fit to the training data, this may be flipped to False. However,
doing so causes data leakage.

interpo-
late_kwargs

dict None Gets passed to df.interpolate(). See Interpolate section for defaults.

4aii. Attributes

These are the fields in the LabelInterpolater table

30 Chapter 4. ORM



AIQC

Attribute Type Description
pro-
cess_separately

Boolean-
Field

Whether or not the training data was interpolated by fitting to the entire dataset or
not. Indicator of data leakage.

interpo-
late_kwargs

JSONField Gets passed to df.interpolate(). See Interpolate section for defaults.

match-
ing_columns

JSONField The columns that were successfully interpolated

label For-
eignKey-
Field

The Label that this LabelInterpolater is applied to

4.6.2 4b. FeatureInterpolater

For multivariate datasets, columns/dtypes may need to be handled differently. So we use column/dtype filters to apply
separate transformations. If the first transformation’s filter includes a certain column/dtype, then subsequent filters may
not include that column/dtype.

4bi. Methods

FeatureInterpolater.from_feature()

FeatureInterpolater.from_feature(
feature_id
, process_separately
, interpolate_kwargs
, dtypes
, columns
, verbose

)

Argu-
ment

Type De-
fault

Description

fea-
ture_id

int Re-
quired

Points to the Feature.columns to use

pro-
cess_separately

bool True Used to restrict the fit to the training data, this may be flipped to False. However, doing so
causes data leakage.

inter-
po-
late_kwargs

dict None The interpolate_kwargs:dict=N one object is what gets passed to Pandas interpo-
lation. In my experience, method=spline produces the best results. However, if either
(a) spline fails to fit to your data, or (b) you know that your pattern is linear - then try
method=linear.

dtypes list(str)None The dtypes to include
columns list(str)None The columns to include. Errors if any of the columns were already included by dtypes.
ver-
bose

bool True If True, messages will be printed about the status of the interpolaters as they attempt to fit
on the filtered columns

4.6. 4. Interpolate 31



AIQC

4bii. Attributes

These are the fields in the FeatureInterpolater table

Attribute Type Description
idx IntegerField Zero-based auto-incrementer that counts the number of FeatureInterpolaters at-

tached to a Feature.
pro-
cess_separately

Boolean-
Field

Whether or not the training data was interpolated by fitting to the entire dataset or
not. Indicator of data leakage.

interpo-
late_kwargs

JSONField Gets passed to df.interpolate(). See Interpolate section for defaults.

match-
ing_columns

JSONField The columns that matched the filter

left-
over_columns

JSONField The columns that were not included in the filter

left-
over_dtypes

JSONField The dtypes that were not included in the filter

original_filter JSONField dict().keys()==['include' ,'dtypes','columns']
feature For-

eignKey-
Field

The Feature that this FeatureInterpolater is applied to

4.7 5. Encode

Transform data into numerical format that is close to zero. Reference Encoding for more information.

There are two phases of encoding: 1. fit on train - where the encoder learns about the values of the samples made
available to it. Ideally, you only want to fit aka learn from your training split so that you are not leaking information
from your validation and test spits into your model! However, categorical encoders are always fit on the entire dataset
because they are not prone to leakage and any weights tied to empty OHE inputs will zero-out. 2. transform each
split/fold

Only sklearn.preprocessing methods are officially supported, but we have experimented with sklearn.
feature_extraction.text.CountVectorizer

4.7.1 5a. LabelCoder

Label is intended for a single column, so only 1 LabelCoder will be used during Label.preprocess()

Unfortunately, the name “LabelEncoder” is occupied by sklearn.preprocessing.LabelEncoder

32 Chapter 4. ORM

https://docs.aiqc.io/pages/explainer.html
https://towardsdatascience.com/data-leakage-5dfc2e0127d4
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing


AIQC

5ai. Methods

LabelCoder.from_label()

LabelCoder.from_label(
label_id
, sklearn_preprocess

)

Ar-
gu-
ment

Type De-
fault

Description

la-
bel_id

int Re-
quired

Points to the Label.columns to use

sklearn_preprocessob-
ject

Re-
quired

An instantiated sklearn.preprocessing class-based encoder - e.g. StandardScaler()
neither StandardScaler nor scale(). AIQC will automatically correct the attributes of
your encoder to smooth out any common errors they would cause. For example, preventing
sparse SciPy matrix output (errors during tensor conversion) and data copy().

5aii. Attributes

These are the fields in the LabelCoder table

Attribute Type Description
only_fit_train BooleanField Whether or not the encoder was fit on the training data or the entire dataset
is_categorical BooleanField If the encoder is meant for categorical data, and therefore automatically fit on

the entire dataset
sklearn_preprocessPickleField The instantiated sklearn.preprocessing class that was fit
match-
ing_columns

JSONField The columns that matched the dtype/ column name filters

encod-
ing_dimension

CharField Did the encoder succeed on 1D/ 2D uni-column/ 2D multi-column?

label ForeignKey-
Field

The Label that this LabelCoder is applied to

4.7.2 5b. FeatureCoder

For multivariate datasets, columns/dtypes may need to be handled differently. So we use column/dtype filters to apply
separate transformations. If the first transformation’s filter includes a certain column/dtype, then subsequent filters may
not include that column/dtype.

4.7. 5. Encode 33



AIQC

5bi. Methods

FeatureCoder.from_feature()

FeatureCoder.from_feature(
feature_id
, sklearn_preprocess
, include
, dtypes
, columns
, verbose

)

Ar-
gu-
ment

Type De-
fault

Description

fea-
ture_id

int Re-
quired

Points to the Feature.columns to use

sklearn_preprocessob-
ject

Re-
quired

An instantiated sklearn.preprocessing class-based encoder - e.g. StandardScaler()
neither StandardScaler nor scale(). AIQC will automatically correct the attributes of
your encoder to smooth out any common errors they would cause. For example, preventing
sparse SciPy matrix output (errors during tensor conversion) and data copy().

in-
clude

bool True Whether to include or exclude the dtypes/columns that match the filter. You can create a filter
for all columns by setting include=False and then setting both dtypes and columns to
None.

dtypes list(str)None The dtypes to filter
columnslist(str)None The columns to filter. Errors if any of the columns were already used by dtypes.
ver-
bose

bool True If True, messages will be printed about the status of the encoders as they attempt to fit on the
filtered columns

5bii. Attributes

These are the fields in the FeatureCoder table

34 Chapter 4. ORM



AIQC

Attribute Type Description
idx Inte-

gerField
Zero-based auto-incrementer that counts the number of FeatureCoders attached to
a Feature.

sklearn_preprocessPickle-
Field

The instantiated sklearn.preprocessing class that was fit

en-
coded_column_names

JSON-
Field

After the columns are encoded, what are their names? OHE appends
_<category> to the original column names as it expands

match-
ing_columns

JSON-
Field

The columns that matched the filter

left-
over_columns

JSON-
Field

The columns that were not included in the filter

leftover_dtypes JSON-
Field

The dtypes that were not included in the filter

original_filter JSON-
Field

dict().keys()==['include' ,'dtypes','columns']

encod-
ing_dimension

CharField Did the encoder succeed on 1D/ 2D uni-column/ 2D multi-column?

only_fit_train Boolean-
Field

Whether or not the encoder was fit on the training data or the entire dataset

is_categorical Boolean-
Field

If the encoder is meant for categorical data, and therefore automatically fit on the
entire dataset

feature For-
eignKey-
Field

The Feature that this FeatureCoder is applied to

4.8 6. Shape

Changes the shape of data. Only supports Features, not Labels.

Reshaping is applied at the end of Feature.preprocess(). So if the feature data has been altered via time series
windowing or One Hot Encoder, then those changes will be reflected in the shape that is fed to `

When working with architectures that are highly dimensional such convolutional and recurrent networks (Conv1D,
Conv2D, Conv3D / ConvLSTM1D, ConvLSTM2D, ConvLSTM3D), you’ll often find yourself needing to reshape data
to fit a layer’s required input shape.

• Reducing unused dimensions - When working with grayscale images (1 channel, 25 rows, 25 columns) it’s better
to use Conv1D instead of Conv2D.

• Adding wrapper dimensions - Perhaps your data is a fit for ConvLSTM1D, but that layer is only supported in
the nightly TensorFlow build so you want to add a wrapper dimension in order to use the production-ready
ConvLSTM2D.

AIQC favors a “channels_first” (samples, channels, rows, columns) approach as opposed to “channels_last” (samples,
rows, columns, channels).

Can’t I just reshape the tensors during the training loop? You could. However, AIQC systemtically pro-
vides the shape of features and labels to Algorith.fn_build to make designing the topology easier, so
it’s best to get the shape right beforehand. Additionally, if you reshape your data within the training loop,
then you may also need to reshape the output of Algorithm.fn_predict so that it is correctly formatted
for automatic post-processing. It’s also more computationally efficient to do the reshaping once up front.

4.8. 6. Shape 35



AIQC

The reshape_indices argument is ultimately fed to np.reshape(newshape). We use index n to point to the value at
ndarray.shape[n].

Reshaping by Index

Let’s say we have a 4D feature consisting of 3D images (samples * channels * rows * columns). Our problems
is that the images are B&W, so we don’t want a color channel because it would add unecessary dimensionality to our
model. So we want to drop the dimension at the shape index 1.

reshape_indices = (0,2,3)

Thus we have wrangled ourselves a 3D feature consisting of 2D images (samples * rows * columns).

Reshaping Explicitly

But what if the dimensions we want cannot be expressed by rearranging the existing indices? If you define a number
as a str, then that number will be used as directly as the value at that position.

So if I wanted to add an extra wrapper dimension to my data to serve as a single color channel, I would simply do:

reshape_indices = (0,'1',1,2)

Then couldn’t I just hardcode my shapes with strings? Yes, but FeatureShaper is applied to all of the
splits, which are assumed to have different shapes, which is why we use the indices.

Multiplicative Reshaping

Sometimes you need to stack/nest dimensions. This requires multiplying one shape index by another.

For example, if I have a 3 separate hours worth of data and I want to treat it as 180 minutes, then I need to go from a
shape of (3 hours * 60 minutes) to (180 minutes). Just provide the shape indices that you want to multiply in a tuple
like so:

<!> if your model is unsupervised (aka generative or self-supervised), then it must output data in “col-
umn (aka width) last” shape. Otherwise, automated column decoding will be applied along the wrong
dimension.

4.8.1 6a. Methods

FeatureShaper.from_feature()

FeatureShaper.from_feature(
feature_id
, reshape_indices

)

Argument Type Default Description
feature_id int Required The Feature.id to use
reshape_indices tuple(int/str/tuple) Required See Strategies.

36 Chapter 4. ORM

https://numpy.org/doc/stable/reference/generated/numpy.reshape.html


AIQC

4.8.2 6b. Attributes

These are the fields of the FeatureShaper table

Attribute Type Description
reshape_indices PickleField See #Reshaping-by-Index.Pickle because tuple has no JSON equivalent.
column_position IntegerField The shape index used for columns aka width.
feature ForeignKeyField The Feature that reshaping is applied to.

4.9 7. Window

Window facilitates sliding windows for a time series Feature. It does not apply to Labels. This is used for unsupervised
(aka self-supervised) walk-forward forecasting for time series data.

size_window determine how many timepoints are included in a window, and size_shift determines how many
timepoints to slide over before defining a new window.

For example, if we want to be able to predict the next 7 days worth of weather using the past 21 days of
weather, then our size_window=21 and our size_shift=7.

Challenges

Dealing with stratified windowed data demands a systematic approach.

Windowing always increases dimensionality

After data is windowed, its dimensionality increases by 1. Why? Well, originally we had a single time series. However,
if we window that data, then we have many time series subsets.

4.9. 7. Window 37



AIQC

As the highest dimension, it becomes the “sample”

No matter what dimensionality the original data has, it will be windowed along the first dimension.

This means that the windows now serve as the samples, which is important for stratification. If we have a year’s worth
of windows, we don’t want all of our training windows to come from the same season. Therefore, Window must be
created prior to Splitset.

Windowing may causes overlap in splits

In addition to increasing the dimensionality of our data, it makes it harder to nail down the boundaries of our splits in
order to prevent data leakage.

As seen in the diagram above, the timesteps of the train and test splits may overlap. So if we are fitting an interpolater
to our training split, the first 3 NaNs would be included, but the last 2 would not.

Shifted and unshifted windows

In a walk-forward analysis, we learn about the future by looking at the past. So we need 2 sets of windows:

• Unshifted windows (orange in diagram above): represent the past and serves as the features we learn from

• Shifted windows (green in diagram above): represent the future and serves as the target we predict

38 Chapter 4. ORM



AIQC

However, when conducting inference, we are trying to predict the shifted windows not learn from them. So we don’t
need to record any shifted windows.

4.9.1 7a. Methods

Window.from_feature()

Window.from_feature(
feature_id
, size_window
, size_shift
, record_shifted

)

Argument Type De-
fault

Description

dataset_id int Re-
quired

Feature.id from which you want to derive windows.

size_window int Re-
quired

The number of timesteps to include in a window.

size_shift int Re-
quired

The number of timesteps to shift forward.

record_shiftedbool True Whether or not we want to keep a shifted set of windows around. During pure
inference, this is False.

4.9.2 7b. Attributes

These are the fields of the Window table

Attribute Type Description
size_window Inte-

gerField
Number of timesteps in each window

size_shift Inte-
gerField

The number of timesteps in the shift forward.

win-
dow_count

Inte-
gerField

Not a relationship count! Number of windows in the dataset. This becomes the new
samples dimension for stratification.

sam-
ples_unshifted

JSONField Underlying sample indices of each window in the past-shifted windows.

sam-
ples_shifted

JSONField Underlying sample indices of each window in the future-shifted windows.

feature For-
eignKey-
Field

The Feature that this windowing is applied to

4.9. 7. Window 39



AIQC

4.10 8. Splitset

Used for sample stratification. Reference Stratification section of the Explainer.

Split Description
train The samples that the model will be trained upon. Later, we’ll see how we can make cross-folds from

our training split. Unsupervised learning will only have a training split.
validation
(optional)

The samples used for training evaluation. Ensures that the test set is not revealed to the model during
training.

test (op-
tional)

The samples the model has never seen during training. Used to assess how well the model will perform
on unobserved, natural data when it is applied in the real world aka how generalizable it is.

Because Splitset groups together all of the data wrangling entities (Features, Label, Folds) it essentially
represents a Pipeline, which is why it bears the name Pipeline in the High-Level API.

Cross-Validation

Cross-validation is triggered by fold_count:int during Splitset creation. Reference the scikit-learn documentation
to learn more about cross-validation.

Each row in the diagram above is a Fold object.

Each green/blue box represents a bin of stratified samples. During preprocessing and training, we rotate which blue
bin serves as the validation samples (fold_validation). The remaining green bins in the row serve as the training
samples (folds_train_combined).

Let’s say we defined fold_count=5. What are the implications?

• Creates 5 Folds related to a Splitset.

• 5x more preprocessing and caching; each fold_validation is excluded from the fit on
folds_train_combinared. Fits are saved to the orm.Fold object as opposed to the orm.Feature/
Label objects.

• 5x more models will be trained for each experiment.

40 Chapter 4. ORM

https://docs.aiqc.io/pages/explainer.html
https://scikit-learn.org/stable/modules/cross_validation.html


AIQC

• 5x more evaluation.

Disclaimer about inherent limitations & challenges

Do not use cross-validation unless the distribution of each resulting fold (total sample count divided by
fold_count) is representatitve of your broader sample population. If you are ignoring that advice and
stretching to perform cross-validation, then at least ensure that the total sample count is evenly divisble by
fold_count. Both of these tips help avoid poorly stratified/ undersized folds that seem to perform either
unjustifiably well (100% accuracy when only the most common label class is present) or poorly (1 incorrect
prediction in a small fold negatively skews an otherwise good model).

If you’ve ever performed cross-validation manually with too few samples, then you’ll know that it’s easy
enough to construct the folds, but then it’s a pain to calculate performance metrics (e.g. zero_division,
absent OHE classes) due to the absence of outlying classes and bins. Time has been invested to handle
these scenarios elegantly so that folds can be treated as first-class-citizens alongside splits. That being
said, if you try to do something undersized like multi-label classification using 150 samples then you may
run into errors during evaluation.

Samples Cache

Each Splitset has as cache_path attribute, which represents a local directory where preprocessed data is stored during
training & evaluation.

The output of feature.preprocess() and label.preprocess() are written to this folder prior to training so that:

1. Each Job does not have to preprocess data from scratch.

2. The original data does not need to be held in memory between Jobs.

aiqc/cache/samples/splitset_uid
<fold_index> | "no_fold"

<split>
label.npy
feature_<i>.npy

• <fold_index> is a folder for each Fold, since they have different samples. Whereas “no_fold” is a single folder
for a regular splitset where there are no folds. ‘no_fold’ just keeps the folder depth uniform for regular splitsets

• <split>: The samples[<split>] of interest: ‘train’, ‘validation’, ‘folds_train_combined’, ‘fold_validation’,
‘test’.

• feature_<n> accounts for Splitsets with more than 1 Feature.

The Splitset.cache_hot:bool argument indicates whether or not the cache for that splitset is populated or not.

Samples are automatically cached during Queue.run_jobs().

See also: orm.splitset.clear_cache() and utils.config.clear_cache_all()

4.10. 8. Splitset 41



AIQC

4.10.1 8a. Methods

Splitset.make()

Splitset.make(
feature_ids
, label_id
, size_test
, size_validation
, bin_count
, fold_count
, unsupervised_stratify_col
, name
, description
, predictor_id

)

Argument Type De-
fault

Description

feature_ids list(int)Re-
quired

Multiple Feature.id’s may be included to enable multi-modal (aka mixed data-type)
analysis. All of these Features must have the same number of samples.

label_id int None The Label to be used as a target for supervised analysis. Must have the sample number
of samples as the Features.

size_test float None Percent of samples to be placed into the test split. Must be > 0.0 and < 1.0.
size_validationfloat None Percent of samples to be placed into the validation split. Must be > 0.0 and < 1.0.

If this is not None and used in combination with fold_count, then there will be 4
splits.

bin_count int None For continous stratification columns, how many bins (aka quantiles) should be used?
fold_count int None The number or cross-validation folds to generate. See Cross-Validation.
unsuper-
vised_stratify_c
ol

str None Used during unsupervised analysis. Specify a column from the first Feature in fea-
ture_ids to use for stratification. For example, when forecasting, it may make sense to
stratify by the day of the year.

name str None Used for versioning a pipeline (collection of inputs, label, and stratification). Two
versions cannot have identical attributes.

description str None What is unique about this this pipeline?

size_train = 1.00 - (size_test + size_validation) the backend ensures that the sizes sum to
1.00

How does continuous binning work? Reference the handy Pandas.qcut() and the source code pd.
qcut(x=array_to_bin, q=bin_count, labels=False, duplicates='drop') for more detail.

Splitset.cache_samples()

See Samples Cache section for a description

Splitset.cache_samples(id)

Argument Type Default Description
id int Required The identifier of the Splitset of interest

42 Chapter 4. ORM



AIQC

Splitset.clear_cache()

See Samples Cache section for a description. Deletes the entire directory located at Splitset.cache_path.

Splitset.clear_cache(id)

Argument Type Default Description
id int Required The identifier of the Splitset of interest

Splitset.fetch_cache()

See Samples Cache section for a description. This fetches a specific file from the cache.

Splitset.fetch_cache(
id
, split
, label_features
, fold_id
, library

)

Argument Type De-
fault

Description

id int Re-
quired

The identifier of the Splitset of interest

split int Re-
quired

The samples[<split>] of interest: ‘train’, ‘validation’, ‘folds_train_combined’,
‘fold_validation’, ‘test’.

la-
bel_features

str Re-
quired

Either 'label' or 'features'

fold_id int None The identifier of the Fold of interest, if any
library str None If 'pytorch', it will convert each returned array to FloatTensor()

label_features Value Returns
'label' ndarray
'features' ndarray or list(ndarray)

4.10.2 8b. Attributes

These are the fields of the Splitset table

4.10. 8. Splitset 43



AIQC

Attribute Type Description
cache_path CharField Where the splitset stores its cached samples
cache_hot Boolean-

Field
If the samples are currently stored in the cache

samples JSON-
Field

The bins that splits have been stratified into dict(split=[sample_indice s])

sizes JSON-
Field

Human-readable sizes of the splits dict(split=dict(percent=f loat,
count=int))

supervision CharField Either “supervised” or “unsupervised” if the Splitset has a Label.
has_validation Boolean-

Field
Logical flag indicating if this Splitset has a validation split.

fold_count Inte-
gerField

The number of cross-validation Folds that belong to this Splitset

bin_count Inte-
gerField

The number of bins used to stratify a continuous column label or unsupervised_stratify
column

**unsuper-
vised_stratifyCol
**

CharField Used during unsupervised analysis. Specify a column from the first Feature in fea-
ture_ids to use for stratification. For example, when forecasting, it may make sense to
stratify by the day of the year.

key_train CharField 'train' by default, but 'folds_train_combined' if Splitset has Folds. None for
an inference splitset.

key_evaluation CharField 'test' if neither validation split nor Folds are used. 'validation' if a validation
split is used. 'fold_validation' if Splitset has Folds. None for an inference splitset.

key_test CharField 'test' by default. None for an inference splitset.
version Inte-

gerField
[TBD]

label For-
eignKey-
Field

The Label, if any, that supervises this splitset

predictor De-
ferred-
For-
eignKey

During inference, a new Splitset of samples to be predicted may attach to a Predic-
tor. Samples dict will bear the key of the Predictor.Splitset.count( ) e.g.
'infer_0'.

These are the fields of the Fold table

At-
tribute

Type Description

idx Inte-
gerField

Zero-based auto-incrementer that counts the Folds

sam-
ples

JSON-
Field

Contains the sample indices of the training folds and leftout validation fold, as well as any val-
idation and test splits defined in the regular Splitset.samples dict().keys()==['folds_tr
ain_combined', 'fold_valida tion', 'validation', 'test' ]

fit-
ted_labelcoder

Pick-
le-
Field

When LabelCoders’s fit an sklearn preprocessor, the fit objects are saved here for down-
stream inverse_transform’ing

fit-
ted_featurecoders

Pick-
le-
Field

When FeatureCoder’s fit an sklearn preprocessor, the fit objects are saved here for down-
stream inverse_transform’ing

splitset For-
eignKey-
Field

The Splitset that this Fold belongs to

44 Chapter 4. ORM



AIQC

4.11 9. Algorithm

Now that our data has been prepared, we transition to the 2nd half of the ORM where the focus is the logic that will be
applied to that data.

The Algorithm contains all of the components needed to construct, train, and use our model.

Reference the tutorials for examples of how Algorithms are defined.

PyTorch Fit

Provides an abstraction that eliminates the boilerplate code normally required to train and evaluate a PyTorch model.

• Before training - it shuffles samples, batches samples, and then shuffles batches.

• During training - it calculates batch loss, epoch loss, and epoch history metrics.

• After training - it calculates metrics for each split.

model, history = utils.pytorch.fit(
# These arguments come directly from `fn_train`
model
, loser
, optimizer

, train_features
, train_label
, eval_features
, eval_label

# These arguments are user-defined
, epochs
, batch_size
, enforce_sameSize
, allow_singleSample
, metrics

)

User-Defined Argu-
ments

Type De-
fault

Description

epochs int 30 The number of times to loop over the features
batch_size int 5 Divides features and lables into chunks to be trained

upon
enforce_sameSize bool True If True, drops len(batch!=batch_size)
allow_singleSample bool False If False, drops len(batch!=1)
metrics list(torchmetrics.metric())None List of instantiated torchmetrics classes e.g.

Accuracy

History Metrics

The goal of the Predictor.history object is to record the training and evaluation metrics at the end of each epic so
that they can be interpretted in the learning curve plots. Reference the evaluation section.

• Keras: any metrics=[] specified are automatically added to the History callback object.

4.11. 9. Algorithm 45

../pages/gallery.html
evaluation.html


AIQC

• PyTorch: if you use fit seen above, then you don’t need to worry about this. Users are responsible for calculating
their own metrics (we recommend the torchmetrics package) and placing them into a history dictionary that
mirrors the schema of the Keras history object. Reference the torch examples.

The schema of the history dictionary is as follows: dict(<metric>:ndarray,
val_<metric>=ndarray). For example, if you wanted to record the history of the ‘loss’ and
‘accuracy’ metrics manually for PyTorch, you would construct it like so:

history = dict(
loss = ndarray
, val_loss = ndarray

, accuracy = ndarray
, val_accuracy = ndarray

)

TensorFlow Early Stopping

Early stopping isn’t just about efficiency in reducing the number of epochs. If you’ve specified 300 epochs, there’s a
chance your model catches on to the underlying patterns early, say around 75-125 epochs. At this point, there’s also
good chance what it learns in the remaining epochs will cause it to overfit on patterns that are specific to the training
data, and thereby and lose it’s simplicity/ generalizability.

The metric=val_* prefix refers to the evaluation samples.

Remember, regression does not have accuracy metrics.

TrainingCallback.MetricCutoff is a custom class we wrote to make early stopping easier, so you
won’t find information about it in the official Keras documentation.

Placed within fn_train:

from aiqc.utils.tensorflow import TrainingCallback

#Define one or more metrics to monitor.
metrics_cuttoffs = [

dict(metric='accuracy', cutoff=0.96, above_or_below='above'),
dict(metric='loss', cutoff=0.1, above_or_below='below')
dict(metric='val_accuracy', cutoff=0.96, above_or_below='above'),
dict(metric='val_loss', cutoff=0.1, above_or_below='below')

]
cutoffs = TrainingCallback.MetricCutoff(metrics_cuttoffs)

# Pass it into keras callbacks
model.fit(

# other fit args
callbacks = [cutoffs]

)

Tip: try using a val_accuracy threshold by itself for best results

46 Chapter 4. ORM

gallery/pytorch/multi_class.html


AIQC

4.11.1 9a. Methods

Assemble an architecture consisting of components defined in functions.

The **hp kwargs are common to every Algorithm function except fn_predict. They are used to systematically pass
a dictionary of hyperparameters into these functions. See Hyperparameters.

Algorithm.make()

Algorithm.make(
library
, analysis_type
, fn_build
, fn_train
, fn_predict
, fn_lose
, fn_optimize

)

Ar-
gu-
ment

Type De-
fault

Description

li-
brary

str Re-
quired

‘keras’ or ‘pytorch’ depending on the type of model defined in fn_build

anal-
y-
sis_type

str Re-
quired

‘classification_binary’, ‘classification_multi’, or ‘regression’. Unsupervised/ self-supervised
falls under regression. Used to determine which performance metrics are run. Errors if it
is incompatible with the Label provided: e.g. classification_binary is incompatible with an
np.floating Label.column.

fn_buildfunc Re-
quired

See below. Build the model architecture.

fn_trainfunc Re-
quired

See below. Train the model.

fn_predictfunc None See below. Run the model.
fn_losefunc None See below. Calculate loss.
fn_optimizefunc None See below. Optimization strategy.

Required Functions

def fn_build(
features_shape:tuple
, label_shape:tuple
, **hp:dict

):
# Define tf/torch model
return model

The *_shape arguments contain the shape of a single sample, as opposed to a batch or entire dataset.
features_shape is plural because it may contain the shape of multiple features. However, if only 1
feature was used then it will not be inside a list.

def fn_train(
model:object

(continues on next page)

4.11. 9. Algorithm 47



AIQC

(continued from previous page)

, loser:object
, optimizer:object
, train_features:ndarray
, train_label:ndarray
, eval_features:ndarray
, eval_label:ndarray
, **hp:dict

):
# Define training/ eval loop.
# See `utils.pytorch.fit`

# if tensorflow
return model
# if torch
# See `utils.pytorch.fit` and history metrics below
return history:dict, model

Optional Functions

Where are the defaults for optional functions defined? See utils.tensorflow and utils.pytorch for examples
of loss, optimization, and prediction.

def fn_predict(model:object, features:ndarray):
#if classify. predictions always ordinal, never OHE.
return prediction, probabilities #both as ndarray

#if regression
return prediction #ndarray

def fn_lose(**hp:dict):
# Define tf/torch loss function
return loser

def fn_optimize(**hp:dict):
# Define tf/torch optimizer
return optimizer

Algorithm.get_code()

Returns the strings of the Algorithm functions:

dict(
fn_build = aiqc.utils.dill.reveal_code(Algorithm.fn_build)
, fn_lose = aiqc.utils.dill.reveal_code(Algorithm.fn_lose)
, fn_optimize = aiqc.utils.dill.reveal_code(Algorithm.fn_optimize)
, fn_train = aiqc.utils.dill.reveal_code(Algorithm.fn_train)
, fn_predict = aiqc.utils.dill.reveal_code(Algorithm.fn_predict)

)

48 Chapter 4. ORM

https://github.com/aiqc/AIQC/blob/main/aiqc/utils/tensorflow.py
https://github.com/aiqc/AIQC/blob/main/aiqc/utils/pytorch.py


AIQC

4.11.2 9b. Attributes

These are the fields of the Algorithm table

Attribute Type
library CharField
analysis_type CharField
fn_build BlobField
fn_lose BlobField
fn_optimize BlobField
fn_train BlobField
fn_predict BlobField

See #9.-Algorithm for descriptions

4.12 10. Hyperparameters

As mentioned in Algorithm, the **hp argument is used to systematically pass hyperparameters into the Algorithm
functions.

For example, given the follow set of hyperparamets:

hyperparameters = dict(
epoch_count = [30]
, learning_rate = [0.01]
, neuron_count = [24, 48]

)

A grid search would produce the 2 unique Hyperparamcombo’s:

[
dict(

epoch_count = 30
, learning_rate = 0.01
, neuron_count = 24 #<-- varies

)

, dict(
epoch_count = 30
, learning_rate = 0.01
, neuron_count = 48 #<-- varies

)
]

We access the current value in our model functions like so: hp['neuron_count'].

4.12. 10. Hyperparameters 49



AIQC

4.12.1 10a. Methods

Hyperparamset.from_algorithm()

Hyperparamset.from_algorithm(
algorithm_id
, hyperparameters
, search_count
, search_percent

)

Argu-
ment

Type De-
fault

Description

algo-
rithm_id

int Re-
quired

The Algorithm.id whose functions these hyperparameters will be used with

hyper-
parame-
ters

dict(str:list)Re-
quired

See example in Hyperparameters. Must be JSON compatible.

search_countint None Randomly select n hyperparameter combinations to test. Must be greater than 1. No
upper limit, it will test all combinations if number of combinations is exceeded.

search_percentfloat None Given all of the available hyperparameter combinations, search x%. Between 0.0:
1.0. Cannot be used if search_count is used.

“Bayesian TPE (Tree-structured Parzen Estimator)” via hyperopt has been suggested as a future area to
explore, but it does not exist right now.

4.12.2 10b. Attributes

These are the fields of the Hyperparamset table

Attribute Type Description
hyperparame-
ters

JSONField The original dict(param=list) of all possible values

search_count IntegerField The number of randomly selected combinations of hyperparameters
search_percent FloatField The percent of randomly selected combinations of hyperparameters
algorithm ForeignKey-

Field
The Algorithm.id whose functions these hyperparameters will be used
with

These are the fields of the Hyperparamcombo table

Attribute Type Description
idx IntegerField Zero-based counts the number of the number of hyperparamcombos
hyperparame-
ters

JSONField The specific combination of hyperparameters that will be fed to the Algorithm
functions

hyperparam-
set

ForeignKey-
Field

The Hyperparamset that this combination of hyperparameters was derived
from

50 Chapter 4. ORM



AIQC

4.13 11. Queue

The Queue is the central object of the “logic side” of the ORM. It ties together everything we need to run training Job’s
for hyperparameter tuning. That’s why it is referred to as an Experiment in the High-Level API.

4.13.1 11a. Methods

Queue.from_algorithm()

Queue.from_algorithm(
algorithm_id
, splitset_id
, repeat_count
, permute_count
, hyperparamset_id
, description

)

Ar-
gu-
ment

Type De-
fault

Description

al-
go-
rithm_id

int Re-
quired

The Algorithm.id whose functions will be used during training and evaluation

split-
set_id

int Re-
quired

The Splitset.id whose samples will be used during training and evaluation

re-
peat_count

int 1 Each job will be repeat n times. Designed for use with random weight initialization (aka non-
deterministic). This is why 1 Job has many Predictors

per-
mute_count

int 3 Triggers a shuffled permutation of each training data column to determine which columns
have the most impact on loss in comparison baseline training loss: [training loss -
(median loss of <n> permutations)]` `. The count determines how many
times the shuffled permutation is ran before taking the median loss.
Permutation does *not* get run on ``Feature.dataset.typ=='ima ge'. Set
this to 0 if you do not care about feature importance. Retroactive feature importance is possible
via Prediction.calcFeatureImp ortance().

hy-
per-
param-
set_id

int None The Hyperparamset.id whose samples will be used during training and evaluation. This
needs to be specified because an Algorithm can have many Hyperparamsets.

de-
scrip-
tion

str None What is unique about this experiment?

Queue.run_jobs()

Jobs are simply ran on a loop on the main process.

4.13. 11. Queue 51



AIQC

Stop the queue with a keyboard interrupt e.g. ctrl+Z/D/C in Python shell or i,i in Jupyter. It is listening for interupts
so it will usually stop gracefully. Even if it errors upon during interrupt, it’s not a problem. You can rerun the queue
and it will resume on the same job it was running previously.

Queue.run_jobs(id)

Argument Type Default Description
id int Required The identifier of the Queue of interest

Queue.plot_performance()

Plots every model trained by the queue for comparison.

• X axis = loss

• Y axis = score

Queue.plot_performance(
id
, call_display
, max_loss
, min_score
, score_type
, height

)

Argu-
ment

Type De-
fault

Description

id int Re-
quired

The identifier of the Queue of interest

call_displaybool True If True, calls display() on plot. If False, returns Plotly figure object.
max_loss float None Models with any split with higher loss than this threshold will not be plotted.
min_score typ None Models with any split with a lower score than this threshold will not be plotted.
score_type typ None Defaults to "accuracy" for classification analysis, and "r2" for regression analysis.

See aiqc.utils.meter for available metrics.
height typ None Default height is 560 but you can force it to be taller

Queue.metrics_df()

Displays metrics for every split/fold of every model.

Queue.metrics_df(
id
, selected_metrics
, sort_by
, ascending

)

52 Chapter 4. ORM

https://github.com/aiqc/AIQC/blob/main/aiqc/utils/meter.py


AIQC

Argument Type De-
fault

Description

id int Re-
quired

The identifier of the Queue of interest

ascending typ False Descending if False.
se-
lected_metrics

list(str) None If you get overwhelmed by the variety of metrics returned, then you can include
the ones you want selectively by name.

sort_by str None You can sort the dataframe by any column name.

Queue.metricsAggregate_df()

Aggregate statistics about every metric of every model trained in the Queue – displays the average, median, standard
deviation, minimum, and maximum across all splits/folds.

Queue.metricsAggregate_df(
id
, ascending = False
, selected_metrics = None
, selected_stats = None
, sort_by = None

)

Argument Type De-
fault

Description

id int Re-
quired

The identifier of the Queue of interest

ascending typ False Descending if False.
se-
lected_metrics

list(str) None If you get overwhelmed by the variety of metrics returned, then you can include
the ones you want selectively by name.

sort_by str None You can sort the dataframe by any column name.

4.13. 11. Queue 53



AIQC

4.13.2 11b. Attributes

These are the fields of the Queue table

Attribute Type Description
re-
peat_count

Inte-
gerField

The number of times to repeat each Job.

total_runs Inte-
gerField

The total number of models to be trained as a result of this queue being created.

per-
mute_count

Inte-
gerField

Number of permutations to run on each column before taking the median impact on
loss. 0 means permutation was skipped.

runs_completedInte-
gerField

Counts the runs that have actually finished

algorithm For-
eignKey-
Field

The model functions to use during training and evaluation

splitset For-
eignKey-
Field

The pipeline of samples to feed to the models during training and evaluation

hyper-
paramset

For-
eignKey-
Field

Contains all of the hyperparameters to be used for the Jobs

4.14 12. Job

The Queue spawns Job’s. A Job is like a spec/ manifest for training a model. It may be repeated.

# jobs = Hyperamset.hyperamcombo.count() * Queue.repeat_count * splitset.folds.count()

4.14.1 12a. Methods

There are no noteworthy, user-facing methods for the Job class

4.14.2 12b. Attributes

These are the fields of the Job table

Attribute Type Description
repeat_count IntegerField The number of times this Job is to be repeated
queue ForeignKeyField The Queue this Job was created by
hyperparamcombo ForeignKeyField The parameters this Job uses
fold ForeignKeyField The cross-validation samples that this Job uses

54 Chapter 4. ORM



AIQC

4.15 13. Predictor

As the Jobs finish, they save the model and history metrics within a Predictor object.

4.15.1 13a. Methods

Predictor.get_model()

predictor.get_model(id)

Handles fetching and initializing the model (and PyTorch optimizer) from Predictor.model_file and Predictor.
input_shapes

Argument Type Default Description
id int None The identifier of the Predictor of interest

Predictor.get_hyperparameters()

This is a shortcut to fetch the hyperparameters used to train this specific model. as_pandas toggles between dict()
and DataFrame.

Predictor.get_hyperparameters(id, as_pandas)

Argu-
ment

Type De-
fault

Description

id int None The identifier of the Predictor of interest
as_pandas bool True If True, returns a DataFrame. If False, returns a list(dict(param_name=[val

ues]))

Predictor.plot_learning_curve()

A learning curve will be generated for each train-evaluation pair of metrics in the Predictor.history dictionary

Predictor.plot_learning_curve(
id
, skip_head
, call_display

)

Ar-
gu-
ment

Type De-
fault

Description

id int None The identifier of the Predictor of interest
skip_headbool True Skips displaying the first 15% of epochs. Loss values in the first few epochs can often be

extremely high before they plummet and become more gradual. This really stretches out the
graph and makes it hard to see if the evaluation set is diverging or not.

call_displaybool True If True, calls display() on plot. If False, returns Plotly figure object(s).

4.15. 13. Predictor 55



AIQC

4.15.2 13b. Attributes

These are the fields of the Predictor table

Attribute Type Description
re-
peat_index

IntegerField Counts how many predictors have been trained using a Job spec

time_started DateTime-
Field

When the Job started

time_succeededDateTime-
Field

When the Job finished

time_duration IntegerField Total time in seconds it took to complete the Job
model_file BlobField Contains a dilled (advanced Pickle) of the trained model. See Predictor.

get_model() for exporting.
fea-
tures_shapes

PickleField tuple or list of tuples containing the np.shape(s) of feature(s)

label_shape PickleField tuple containing np.shape of a single sample’s label
history JSONField Contains the training history loss/metrics
is_starred Boolean-

Field
Flag denoting if this model is of interest

job ForeignKey-
Field

The Job that trained this Predictor

4.16 14. Prediction

When data is fed through a Predictor, you get a Prediction. During training, Predictions are automatically generated
for every split/fold in the Queue.splitset.

4.16.1 14a. Methods

Prediction.calc_featureImportance()

This method is provided for conducting feature importance after training. It was decoupled from training for the
following reasons:

• Permutation is computationally expensive, especially for many-columned datasets.

• We don’t care about the feature importance of our best models.

What data is used when calculating feature importance? All splits/folds are concatenated back into a single dataset.
This assumes that all splits/folds are relatively equally balanced with respect to their label values. For example, if
you have unbalanced multi-labels (55:35:10 distribution of classes) then a given feature’s importance may be biased
based on how well it predicts the larger class. For binary classification scenarios, this should not matter as much since
predicting one class also helps in predicting the opposite class.

Upon completion it will update the Prediction.feature_importance and Prediction.permute_count at-
tributes.

56 Chapter 4. ORM



AIQC

Prediction.calc_featureImportance(id, permute_count)

Argu-
ment

Type De-
fault

Description

id int None The identifier of the Prediction of interest
per-
mute_count

int Re-
quired

The count determines how many times the shuffled permutation is ran before taking
the median loss. [training loss - (median loss of <n> permutations)]` `
Permutation *skips* ``Feature.dataset.typ=='ima ge'.

Prediction.importance_df()

Returns a dataframe of feature columns ranked by their median importance

Prediction.importance_df(id, top_n, feature_id)

Argument Type Default Description
id int None The identifier of the Prediction of interest
top_n int None The number of columns to return
feature_id int None Limit returned columns to a specific feature identifier

Prediction.plot_feature_importance()

Plots prediction.feature_importance if Queue.permute_count>0 or Prediction.
calc_featureImportance() was ran after the fact.

Prediction.plot_feature_importance(
id
, call_display
, top_n
, height
, margin_left

)

Argu-
ment

Type De-
fault

Description

id int None The identifier of the Prediction of interest
call_displaybool True If True, calls display() on plot. If False, returns Plotly figure object.
top_n int 10 The number of features to display. If greater than the actual number of features, it just

returns all features.
box-
points

ob-
ject

False Determines how whiskers, outliers, and points are shown. Options are: False, 'all',
'suspectedoutliers', and 'outliers'. Reference Plotly Box Plots.

height int None If None, dynamically makes the plot taller to fit all of the columns
mar-
gin_left

int None If None, dynamically makes the y axis margin wider the longest column name

Prediction.plot_roc_curve()

Receiver operating curve (ROC) for classification metrics.

4.16. 14. Prediction 57

https://plotly.com/python/box-plots/


AIQC

Prediction.plot_roc_curve(id, call_display)

Argument Type Default Description
id int None The identifier of the Prediction of interest
call_display bool True If True, calls display() on plot. If False, returns Plotly figure object.

Prediction.plot_precision_recall()

Precision/recall curve for classification metrics.

Prediction.plot_precision_recall(id, call_display)

Argument Type Default Description
id int None The identifier of the Prediction of interest
call_display bool True If True, calls display() on plot. If False, returns Plotly figure object.

Prediction.plot_confusion_matrix()

Confusion matrices for classification metrics.

Prediction.plot_confusion_matrix(id, call_display)

Argument Type Default Description
id int None The identifier of the Prediction of interest
call_display bool True If True, calls display() on plot. If False, returns Plotly figure object(s).

Prediction.plot_confidence()

Plot the binary/multi-label classification probabilities for a single sample.

Prediction.plot_confidence(
id,
, prediction_index
, height
, call_display
, split_name

)

Argument Type De-
fault

Description

id int None The identifier of the Prediction of interest
predic-
tion_index

int 0 The index of the sample of interest

height int 175 Force the height of the chart.
call_display bool True If True, returns a DataFrame. If False, returns a

list(dict(param_name=[val ues]))
split_name int None The identifier of the Prediction of interest

58 Chapter 4. ORM



AIQC

4.16.2 14b. Attributes

Attribute Type Description
predic-
tions

Pick-
le-
Field

Decoded predictions ndarray for per split/ fold/ inference

per-
mute_count

Inte-
gerField

The number of times this feature importance permuted each column

fea-
ture_importance

JSON-
Field

Importance of each column. Only calculated for training split/fold. Schema:
dict(str(feature.id)=dict (median=float,loss_impacts= list(float)))

probabili-
ties

Pick-
le-
Field

Prediction probabilities per split/ fold. None for regression. Schema:
dict(split=ndarray)

metrics Pick-
le-
Field

Statistics for each split/fold that vary based on the analysis_type.

met-
rics_aggregate

Pick-
le-
Field

Contains the average, median, standard deviation, minimum, and maximum for each statis-
tic across all splits/folds.

plot_data Pick-
le-
Field

Metrics reformatted for plot functions.

4.17 Evaluation

To see the visualization of performance metrics of Queue, Predictor and Prediction in action – reference the
Evaluation documentation.

4.17. Evaluation 59

evaluation.html


AIQC

60 Chapter 4. ORM



CHAPTER

FIVE

DATASETS

5.1 Overview

This notebook contains information about the prepackaged datasets that are referenced throughout the documentation.
These datasets are either:

• Included directly within the AIQC Python package itself (KB)

• Stored remotely in the AIQC GitHub repository (MB)

5.2 Prerequisites

If you’ve already completed the instructions on the Installation page, then let’s get started.

[2]: from aiqc import datum

The module for interacting with the datasets is called datum so that it does not overlap with commonly used names like
‘data’ or ‘datasets’.

61

https:/github.com/aiqc/AIQC/tree/main/aiqc/data
https://github.com/aiqc/AIQC/tree/main/remote_datum/image
installation.html


AIQC

5.3 Prepackaged Local Data

The list_datums() method provides metadata about each of file that is included in the package, so that you can find
one that suits your purposes.

By default it returns a Pandas DataFrame, but you can list_datums(format='list') to change that.

[3]: datum.list_datums()

[3]: name dataset_type analysis_type label \
0 exoplanets.parquet tabular regression SurfaceTempK
1 heart_failure.parquet tabular regression died
2 iris.tsv tabular classification_multi species
3 sonar.csv tabular classification_binary object
4 houses.csv tabular regression price
5 iris_noHeaders.csv tabular classification multi species
6 iris_10x.tsv tabular classification multi species
7 brain_tumor.csv image classification_binary status
8 galaxy_morphology.tsv image classification_binary morphology
9 spam.csv text classification_binary v1
10 epilepsy.parquet sequence classification_binary seizure
11 delhi_climate.parquet sequence forecasting N/A
12 liberty_moon.csv image forecasting N/A

label_classes features samples \
0 N/A 8 433
1 2 12 299
2 3 4 150
3 2 60 208
4 N/A 12 506
5 3 4 150
6 3 4 1500
7 2 1 color x 160 tall x 120 wide 80
8 2 3 colors x 240 tall x 300 wide 40
9 2 text data 5572
10 2 1 x 178 readings 1000
11 N/A 3 1575
12 N/A 1 color x 50 tall x 60 wide 15

␣
→˓ ␣
→˓ description \
0 ␣
→˓ ␣
→˓ Predict temperature of exoplanet.
1 ␣
→˓ ␣
→˓ Biometrics to predict loss of life.
2 ␣
→˓ 3 species of flowers.␣
→˓Only 150 rows, so cross-folds not represent population.
3 ␣
→˓ Detecting either a␣
→˓rock "R" or mine "M". Each feature is a sensor reading.

(continues on next page)

62 Chapter 5. Datasets



AIQC

(continued from previous page)

4 ␣
→˓ ␣
→˓ Predict the price of the house.
5 ␣
→˓ ␣
→˓ For testing; no column names.
6 ␣
→˓ For␣
→˓testing; duplicated 10x so cross-folds represent population.
7 ␣
→˓ ␣
→˓ csv acts as label and manifest of image urls.
8 ␣
→˓ ␣
→˓ tsv acts as label and manifest of image urls.
9 ␣
→˓ ␣
→˓ collection of spam/ ham (not spam) messages
10 <https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition> Storing the␣
→˓data tall so that it compresses better.`label_df = df[['seizure']]; sensor_arr3D = df.
→˓drop(columns=['seizure']).to_numpy().reshape(1000,178,1)`
11 <https://www.kaggle.com/sumanthvrao/daily-climate-time-series-data>.␣
→˓Both train and test (pruned last day from train). 'pressure' and 'wind' columns seem␣
→˓to have outliers. Converted 'date' column to 'day_of_year.'
12 ␣
→˓ ␣
→˓ moon glides from top left to bottom right

location
0 local
1 local
2 local
3 local
4 local
5 local
6 local
7 remote
8 remote
9 local
10 local
11 local
12 remote

The location where Python packages are installed varies from system to system so pkg_resources is used
to find the location of these files dynamically.

Using the value of the name column, you can fetch that file via to_pandas().

[4]: df = datum.to_pandas(name='houses.csv')
df.head()

[4]: crim zn indus chas nox rm age dis rad tax ptratio \
0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3

(continues on next page)

5.3. Prepackaged Local Data 63



AIQC

(continued from previous page)

1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8
2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8
3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7
4 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7

lstat price
0 4.98 24.0
1 9.14 21.6
2 4.03 34.7
3 2.94 33.4
4 5.33 36.2

Alternatively, if you prefer to work directly with the file itself, then you can obtain the location of the file via the
get_demo_file_path() method.

[5]: datum.get_path('houses.csv')

[5]: '/Users/layne/Desktop/AIQC/aiqc/data/houses.csv'

5.4 Remote Data

In order to avoid bloating the package, larger dummy datasets are not included in the package. These kind of datasets
consist of many large files.

They are located within the repository at https://github.com/aiqc/aiqc/remote_datum.

If you want to fetch them on your own, you can do so by appending ?raw=true to the end of an individual
file’s URL.

Otherwise, their locations are hardcoded into the datum methods.

We’ll use the brain_tumor.csv file as an example.

[6]: df = datum.to_pandas(name='brain_tumor.csv')
df.head()

[6]: status size count symmetry \
0 0 0 0 NaN
1 0 0 0 NaN
2 0 0 0 NaN
3 0 0 0 NaN
4 0 0 0 NaN

␣
→˓ url
0 https://raw.githubusercontent.com/aiqc/aiqc/main/remote_datum/image/brain_tumor/
→˓images/healthy_0.jpg
1 https://raw.githubusercontent.com/aiqc/aiqc/main/remote_datum/image/brain_tumor/
→˓images/healthy_1.jpg
2 https://raw.githubusercontent.com/aiqc/aiqc/main/remote_datum/image/brain_tumor/
→˓images/healthy_2.jpg

(continues on next page)

64 Chapter 5. Datasets



AIQC

(continued from previous page)

3 https://raw.githubusercontent.com/aiqc/aiqc/main/remote_datum/image/brain_tumor/
→˓images/healthy_3.jpg
4 https://raw.githubusercontent.com/aiqc/aiqc/main/remote_datum/image/brain_tumor/
→˓images/healthy_4.jpg

This file acts as a manifest for multi-modal datasets in that each row of this CSV represents a sample:

• The 'status' column of this file serves as the Label of that sample. We’ll construct a Dataset.Tabular from
this.

• Meanwhile, the 'url' column acts as a manifest in that it contains the URL of the image file for that sample.
We’ll construct a Dataset.Image from this.

[7]: img_urls = datum.get_remote_urls('brain_tumor.csv')
img_urls[:3]

[7]: ['https://raw.githubusercontent.com/aiqc/aiqc/main/remote_datum/image/brain_tumor/images/
→˓healthy_0.jpg',
'https://raw.githubusercontent.com/aiqc/aiqc/main/remote_datum/image/brain_tumor/images/
→˓healthy_1.jpg',
'https://raw.githubusercontent.com/aiqc/aiqc/main/remote_datum/image/brain_tumor/images/
→˓healthy_2.jpg']

At this point, you can use either the high or low level AIQC APIs [e.g. aiqc.Dataset.Image.from_ulrs()] to
ingest that data and work with it as normal.

5.5 Alternative Sources

If the datasets described above do not satisfy your use case, then have a look at the following repositories:

• UCI: https://archive.ics.uci.edu/ml/datasets.php

• Kaggle: https://www.kaggle.com/datasets

• Quilt: https://open.quiltdata.com/

• sklearn: https://scikit-learn.org/stable/datasets/toy_dataset.html

• seaborn: https://github.com/mwaskom/seaborn-data

5.5. Alternative Sources 65

api_high_level.html
api_low_level.html
https://archive.ics.uci.edu/ml/datasets.php
https://www.kaggle.com/datasets
https://open.quiltdata.com/
https://scikit-learn.org/stable/datasets/toy_dataset.html
https://github.com/mwaskom/seaborn-data


AIQC

66 Chapter 5. Datasets



CHAPTER

SIX

EVALUATION

6.1 Overview

Every training Job automatically generates metrics when evaluated against each split/ fold.

All Analyses

Loss is every neural network’s measure of overall prediction error. The lower the loss, the better. However, it’s not
really intuitive for humans, which is why analysis specific metrics like accuracy and R2 are necessary.

Metrics loss
Plots boomerang plot, learning curve, feature importance

Classification

Although 'classification_multi' and 'classification_binary' share the same metrics and plots, they go
about producing these artifacts differently: e.g. ROC curves roc_multi_class=None vs roc_multi_class='ovr'.

Metrics accuracy, f1, roc_auc, precision, recall, probabilities
Plots ROC-AUC, precision-recall, confusion matrix, sigmoid/ pie probabilities

Regression

67



AIQC

Does not have an 'accuracy' metric, so we default to 'r2', R2 (coefficient of determination, as a guage of ef-
fectiveness. There are no regression-specific plots in AIQC yet. Note that, as a quantitative measure of similarity,
unsupervised/ self-supervised models are also considered a regression.

Metrics r2, mse, explained_variance

Dashboard Arguments

In order to accomodate the dashboards, the following arguments were added:

• call_display:bool=True when True, performs figure.display(). Whereas when False, it returns the
raw Plotly figure object. The learning curve, feature importance, and confusion matrix functions return
list(figs).

• height:int=None pixel-based adjustment for boomerang chart and feature importance.

The actual arguments of the methods in this in this notebook are documented in the Low-Level Docs,

6.2 Prerequisites

Plotly is used for interactive charts (hover, toggle, zoom). Reference the Installation section for information about
configuring Plotly. However, static images are used in this notebook due to lack of support for 3rd party JS in the
documentation portal.

We’ll use the datum and tests modules to rapidly generate a couple examples.

[2]: from aiqc import datum
from aiqc import tests

6.3 Classification

Let’s quickly generate a trained classification model to inspect.

[3]: %%capture
queue_multiclass = tests.tf_multi_tab.make_queue()
queue_multiclass.run_jobs()

6.3.1 Queue Visualization

plot_performance aka the boomerang chart is unique to AIQC, and it really brings the benefits of the library to light.
Each model from the Queue is evaluated against all splits/ folds.

When evaluating a classification-based Queue.analysis_type, the following score_type:str are available: accu-
racy, f1, roc_auc, precision, and recall.

[ ]: queue_multiclass.plot_performance(
max_loss = 1.5, score_type='accuracy', min_score = 0.70

)

68 Chapter 6. Evaluation

dashboard.html
api_low_level.html#10.-Assess-the-Results.
installation.html#Plotting
https://medium.com/towards-data-science/boomerang-plot-9ae4aed419d4


AIQC

6.3.2 Queue Metrics

[5]: queue_multiclass.metrics_df(
selected_metrics = None
, sort_by = 'predictor_id'
, ascending = True

).head(6)

[5]: hyperparamcombo_id job_id predictor_id split accuracy f1 \
0 17 23 23 train 0.912 0.911
1 17 23 23 validation 0.810 0.806
2 17 23 23 test 0.963 0.963

loss precision recall roc_auc
0 0.271 0.917 0.912 0.983
1 0.317 0.822 0.810 0.966
2 0.240 0.967 0.963 1.000

These are also aggregated by metric across all splits/folds.

[6]: queue_multiclass.metricsAggregate_df(
selected_metrics = None
, selected_stats = None
, sort_by = 'predictor_id'
, ascending = True

).head(12)

6.3. Classification 69



AIQC

[6]: hyperparamcombo_id job_id predictor_id metric maximum minimum \
0 17 23 25 accuracy 0.963 0.810
1 17 23 25 f1 0.963 0.806
2 17 23 25 loss 0.317 0.240
3 17 23 25 precision 0.967 0.822
4 17 23 25 recall 0.963 0.810
5 17 23 25 roc_auc 1.000 0.966

pstdev median mean
0 0.063608 0.912 0.895000
1 0.065301 0.911 0.893333
2 0.031633 0.271 0.276000
3 0.060139 0.917 0.902000
4 0.063608 0.912 0.895000
5 0.013880 0.983 0.983000

6.3.3 Job Visualization

A learning curve will be generated for each train-evaluation pair of metrics in the Predictor.history dictionary.
Reference the low-level API for more details.

Loss values in the first few epochs can often be extremely high before they plummet and become more gradual. This
really stretches out the graph and makes it hard to see if the evaluation set is diverging or not. The skip_head:bool
parameter skips displaying the first 15% of epochs so that figure is easier to interpret.

[ ]: queue_multiclass.jobs[0].predictors[0].plot_learning_curve(skip_head=True)

70 Chapter 6. Evaluation

api_low_level.html#Customizable-history


AIQC

[ ]: queue_multiclass.jobs[0].predictors[0].predictions[0].plot_feature_importance(top_n=4)

These classification metrics are preformatted for plotting.

6.3. Classification 71



AIQC

[9]: queue_multiclass.jobs[0].predictors[0].predictions[0].plot_data['test'].keys()

[9]: dict_keys(['confusion_matrix', 'roc_curve', 'precision_recall_curve'])

[ ]: queue_multiclass.jobs[0].predictors[0].predictions[0].plot_roc_curve()

[ ]: queue_multiclass.jobs[0].predictors[0].predictions[0].plot_confusion_matrix()

72 Chapter 6. Evaluation



AIQC

6.3. Classification 73



AIQC

[ ]: queue_multiclass.jobs[0].predictors[0].predictions[0].plot_precision_recall()

6.3.4 Job Metrics

Each training Prediction contains the following metrics by split/fold:

[13]: from pprint import pprint as p

[14]: p(queue_multiclass.jobs[0].predictors[0].predictions[0].metrics)

{'test': {'accuracy': 0.963,
'f1': 0.963,
'loss': 0.24,
'precision': 0.967,
'recall': 0.963,
'roc_auc': 1.0},

'train': {'accuracy': 0.912,
'f1': 0.911,
'loss': 0.271,
'precision': 0.917,
'recall': 0.912,
'roc_auc': 0.983},

'validation': {'accuracy': 0.81,
'f1': 0.806,
'loss': 0.317,
'precision': 0.822,
'recall': 0.81,
'roc_auc': 0.966}}

It also contains per-epoch History metrics calculated during model training.

[15]: queue_multiclass.jobs[0].predictors[0].history.keys()

[15]: dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])

74 Chapter 6. Evaluation



AIQC

6.3.5 Prediction Visualization

Multi-Label Classification Probabilities

[ ]: queue_multiclass.jobs[0].predictors[0].predictions[0].plot_confidence(prediction_index=0)

Binary Classification Probabilities

Also served by plot_confidence() for binary models.

6.3.6 Prediction Metrics

[5]: queue_multiclass.jobs[0].predictors[0].predictions[0].probabilities['train'][0]

[5]: array([0.98889786, 0.0101095 , 0.00099256], dtype=float32)

6.4 Regression

Let’s quickly generate a trained quantification model to inspect.

[18]: %%capture
queue_regression = tests.tf_reg_tab.make_queue()
queue_regression.run_jobs()

6.4. Regression 75



AIQC

6.4.1 Queue Visualization

When evaluating a regression-based Queue.analysis_type, the following score_type:str are available: r2, mse,
and explained_variance.

[ ]: queue_regression.plot_performance(
max_loss=1.5, score_type='r2', min_score=0.65

)

6.4.2 Queue Metrics

[ ]: queue_regression.metrics_df().head(9)

These are also aggregated by metric across all splits/folds.

[ ]: queue_regression.metricsAggregate_df().tail(12)

76 Chapter 6. Evaluation



AIQC

6.4.3 Job Visualization

[ ]: queue_regression.jobs[0].predictors[0].plot_learning_curve(skip_head=True)

[ ]: queue_regression.jobs[0].predictors[0].predictions[0].plot_feature_importance(top_n=12)

6.4. Regression 77



AIQC

6.4.4 Job Metrics

Each training Prediction contains the following metrics.

[19]: p(queue_regression.jobs[0].predictors[0].predictions[0].metrics)

{'test': {'explained_variance': 0.048,
'loss': 0.754,
'mse': 1.045,
'r2': -0.045},

'train': {'explained_variance': 0.036,
'loss': 0.733,
'mse': 0.971,
'r2': 0.029},

'validation': {'explained_variance': 0.048,
'loss': 0.678,
'mse': 0.822,
'r2': 0.043}}

It also contains per-epoch metrics calculated during model training.

[20]: queue_regression.jobs[0].predictors[0].history.keys()

[20]: dict_keys(['loss', 'mean_squared_error', 'val_loss', 'val_mean_squared_error'])

78 Chapter 6. Evaluation



CHAPTER

SEVEN

DEEP LEARNING 101

Boiling down a neural network to its fundamental concepts.

Generative Given what we know about rows 1:1000 → generate row 1001.
Discrimina-
tive

Given what we know about columns A:F → determine column G’s values.

Categorize What is
it?

aka clas-
sify

e.g. benign vs malignant? which species?

Quantify How
much?

aka regress e.g. price? distance? age? radioactivity?

79



AIQC

Binary Checking for the presence of a single condition e.g. tumor
Multi-Label When there are many possible outcomes e.g. species

Features Indepent Variable (X) Informative columns like num_legs, has_wings, has_shell.
Label Dependent Variable (y) The species column that we want to predict.

80 Chapter 7. Deep Learning 101



AIQC

Train 67% What the algorithm is trained on/ learns from.
Validation 21% What the model is evaluated against during training.
Test 12% Blind holdout for evaluating the model at the end of training.

Binarize Cate-
gorical

1 means presence, 0 means absence.

OneHotEn-
code(OHE)

Cate-
gorical

Expand 1 multi-category col into many binary cols.

Ordinal Cate-
gorical

[Bad form] Each category assigned an integer [0,1,2].

Scale Contin-
uous

Shrink the range of values between -1:1 or 0:1.

81



AIQC

species = (num_legs * x) + (has_wings * y) + (has_shell * z)

82 Chapter 7. Deep Learning 101



AIQC

Linear Tabular e.g. spreadsheets & tables.
Convolutional Positional e.g. images, videos, & networks.
Recurrent Ordered e.g. time, text, & DNA.

83



AIQC

Nodes neurons participants in the network e.g. lightbulbs
Edges weights connect (aka link) the nodes together e.g. wires

84 Chapter 7. Deep Learning 101



AIQC

Input Receives the data. Mirrors the shape of incoming features.
Hidden Learns from patterns in the features. The number of layers & neurons based on feature

complexity.
Output Compares predictions to the real label. Mirrors shape of labels (# of categories).
Regulatory [Not pictured here] Dropout, BatchNorm, MaxPool keep the network balanced and help

prevent overfitting.

85



AIQC

86 Chapter 7. Deep Learning 101



AIQC

87



AIQC

Input In a linear network, the receiving layer does not have an activation function.
Hidden The de facto activation function is ReLU. Rarely, Tanh.
Output Sigmoid for binary classify. Softmax for multi-label classify. None for regression.

BinaryCrossentropy Binary classification.
CategoricalCrossentropy Multi-label classification.
MeanSquaredError or MeanAbsoluteError. Used for regression.

Accuracy Classification.
R2 Regression.

88 Chapter 7. Deep Learning 101



AIQC

Duration Food isn’t fully cooked? Train for more epochs or decrease the size of each batch.
Parameters Burning? Turn down learning rate. Tastes bad? Try initialization/ activation spices.
Topology If the food doesn’t fit in the pan, switch to a larger pan with deeper/ taller layers.
Regulation Overfitting on the same old recipes? Add more Dropout to mix things up.

89



AIQC

90 Chapter 7. Deep Learning 101



CHAPTER

EIGHT

OPEN SOURCE

8.1 Purpose

The AIQC framework brings rapid & reproducible deep learning to open science. We strive to empower researchers
with a free tool that is easy to integrate into their experiments. You can learn more about our mission here.

Our initial goal is to build a guided framework for each major type of data (tabular, image, sequence, text, graph) and
analysis (classify, quantify, generate).

Ultimately, we’d like to create/ incorporate domain-specific preprocessing pipelines, pre-trained models, and visual-
izations for each major scientific domain in order to accelerate discovery in each field of science.

8.2 How can I get involved?

• Create a post on the discussion board and introduce yourself so that we can help get you up to speed!

– If you tell us what topics you are interested in, then we can help you get in sync with the project in a way
that is enjoyable for everyone.

– If you want to join the community calls, then be sure to include your timezone and email in your introduc-
tion.

• Jump into the conversation in the Slack group.

91

https://docs.aiqc.io/pages/mission.html
https://github.com/aiqc/aiqc/discussions
https://docs.aiqc.io/pages/links.html


AIQC

8.3 How can I contribute?

• Have a look at the GitHub Issues for something that interests you.

– Keep an eye out for issues are tagged with good first issue.

– We can design a sprint for you that represents a meaningful contribution to the project. This is not limited
to software engineering. For example, it could be something like graphic design, blog-writing, or grant-
writing. As described in the Governance section, completing a sprint is how you join the Core Team.

• Take a look at the Pull Request Template.

– This document provides a PR checklist and shows how to run the tests.

– We’ll review your PR and provide comments on how to get it ready for production. You can also converse
with us in the Slack channel mentioned below.

8.4 Setting up dev environment

Have a read through the Installation section of the documentation for information about OS, Python versions, and
optional Jupyter extensions.

Here is how you can clone the source code, install dependencies, and environment:

git clone git@github.com:aiqc/AIQC.git

cd AIQC

pip install --upgrade -r requirements_dev.txt
pip install --upgrade -r requirements.txt
pip uninstall aiqc -y

git checkout -b my_feature

python
>>> import aiqc

Before you begin developing, make sure that you do NOT have the aiqc package installed. This may be counterintuitive
at first, but remember, you are building the package yourself. So if you imported the pip package, then you are running
scripts against the pip package, not your source code.

Also, have a look at the Documentation’s README for documentation building dependencies as well as some do’s
and don’ts.

92 Chapter 8. Open Source

https://github.com/aiqc/aiqc/issues
https://github.com/aiqc/aiqc/blob/main/.github/pull_request_template.md
https://docs.aiqc.io/notebooks/installation.html
https://github.com/aiqc/AIQC/blob/main/docs/README.md


AIQC

8.5 Programming style

• Prioritize human readability, maintainability, and simplicity over conciseness, efficiency, and performance.

– Do not over-optimize. Schemas change. Over-optimization can make it hard for others to understand, inte-
grate, and adapt your code. It’s better to move on to the next problem than making the current functionality
x% faster.

– Can you do it without lambda, function composition, or some complex 1-liner that takes someone else an
hour to reverse engineer? Remember, most data scientists inherently aren’t world class software engineers,
and vice versa!

– If the code is not used in multiple places, then do not make it a function just for the sake of it. It’s better to
read code top-to-bottom rather than reverse engineering a complex web of someone else’s functions.

– When in doubt, use many lines to express yourself, lots of whitespace, and shallow depth of modularity.

• When handling edge cases, apply the Pareto principle (80-20); try to handle obvious pitfalls, but don’t make the
program more complex than it has to be.

– Do - verify that the file/directory exists when users provide a path argument, provide helpful error messages,
and validate dtypes & shapes of input, but;

– Don’t - spend a month writing your own custom checksum handler or solution for Python multiprocessing
on Windows. Again, move on to something else rather than chasing an asymptote. The edge case code you
wrote may be so specific that it is hard to maintain.

• If in doubt, ask what other people think in a Discussion.

8.6 Code of conduct

Inspired by NumFOCUS leaders and ‘Google I/O 2008 - Open Source Projects and Poisonous People’

• Be cordial and welcoming; Communities are living, breathing social organisms where we can all learn to better
ourselves while coming together to enact meaningful change.

• Agree to disagree; on one hand, acknowledge the merits of the ideas of others and be willing to adapt your
opinion based on new information, but, on the other hand, do not sacrifice what you truly believe in for the sake
of consensus.

• Help educate & mentor; point people in the right direction to get started, but don’t continue to help those who
won’t help themselves. Open source projects are a way for people to break out of their 9-5, so a lot of people
are learning new things. In generally, be significantly less rigid than the StackOverflow community, but do ask
people to state what they have tried, share their code, share their env, etc. Remember, AIQC is at the confluence
of multiple disciplines, so err on the side of educating. English is also a 2nd language for many, so be patient.

• Speaking about other technologies; When you mention other tools, give them as much praise as you can for what
they have done well. Don’t shy away from our benefits, but do take care to phrase your comparison politely. You
never know who you will get connected with. For example, “We wanted our tool to be persistent and easy-to-use
because that’s what it was going to take to get it into the hands of researchers. When we tried out other tools for
ourselves as practicioners, we didn’t feel like they fully satisfied our criteria.”

• Violations; If you feel that certain behavior does not jive with the code of conduct, please report the instance to the
community manager, Layne Sadler. In particular, any instance of either hate, harassment, or heinous prejudice
will result in an immediate and permanent ban without the explicit need for a vote.

8.5. Programming style 93

https://github.com/aiqc/aiqc/discussions
https://www.youtube.com/watch?v=-F-3E8pyjFo


AIQC

8.7 Guild bylaws (aka governance)

Based on advice from our friends at Django and Jupyter:

• “Governance in the early days was largely about reviewing PRs and asking ourselves, ‘Should we do this?’”

• “This is an unfortunate need, but you should have as part of it how someone can be removed from their role,
voluntarily or otherwise.”

• “In smaller projects, the leadership handles the quality of what’s brought into the project’s technical assets and
shepherds the people.”

The vernacular is modeled after a D&D-like guild in order to make governance less dry.

Band of Squires [aka Public Participants]:

• Anyone that participates in community chat/ discussion board or submits a PR, but has not yet completed a sprint.

• All are welcome. Get in touch and we will help design a sprint for you.

• PRs must be reviewed by a council member before a merger.

• All participants are subject to the Code of Conduct.

Fellowship of Archmages [aka Core Team]:

• Anyone who has completed 2 sprints (level I, II, III, IV).

• Participates in the biweekly team meetings.

• Helps administer the Slack community and discussion board.

• PRs must still be reviewed by a council member before a merger.

• If it becomes absolutely necessary, the team can submit a proposal to remove/demote a team member for either
repeated breach of Code of Conduct (2 strike depending on severity) or technical malpractice (1 strike). The
penalty may be either temporary or permanent depending on the severity.

• The team can force any proposal submitted to the discussion board up to the council with a 2/3 vote (assuming
there are at least 3 people on the team). However, rational discourse is preferred to forced votes.

Council of Warlocks [aka Steering Committee]:

• Anyone who has completed 5+ sprints (level V+). With at least 2 sprints being related to core deep learning
functionality.

• Ability to approve PRs.

• Ability to release software (e.g. PyPI).

• Design sprints for new members.

• Inclusion in the license copyright.

• The council can vote on proposals submitted to the discussion board regarding the technical direction/ architecture
of the project. Decisions will be made by a 2/3 majority, using U.S. Senate as a precedent.

• The Grand Warlock [aka Project Creator] reserves the right to a tie-breaking vote. They can also veto a majority
vote on a given proposal, and the proposal cannot be brought up again until 6 months have passed. After which,
if the same proposal succeeds a vote a second time, then they cannot veto it.

• If it becomes absolutely necessary, the council can submit a proposal to remove/demote a team member for either
repeated breach of Code of Conduct (2 strikes depending on severity), intentional malpractice (1 strike), technical
incompetence (3 strikes). The penalty may be either temporary or permanent depending on the severity.

• Changes to either the Governance, Code of Conduct, or License require a proposal to the discussion board.

94 Chapter 8. Open Source

https://www.djangoproject.com/weblog/2020/mar/12/governance/


AIQC

8.8 AIQC, Inc. is open core

All AIQC functionality developed to date is open source. However, for the following reasons, AIQC is incorporated
and will adhere to an open core business model in the long run:

• Many successful open source projects have championed the open core model while managing to remain free:

– Notable examples include: NumFOCUS JuliaLang - JuliaComputing, Apache Spark - Databricks, NumFO-
CUS Dask - Coiled & SaturnCloud, Apache Zeppelin - Zepl, Apache Kafka - Confluent, GridAI - PyTorch
Lightning, Dash & Plotly - Plotly, MongoDB, RStudio.

– It’s analogous to the freemium days of web 2.0 and apps. 95% of people get access to the free service while
5% of users pay for the premium options that solve their specific problems.

• In order to apply for certain government grant programs like the National Science Foundation (NSF) and DARPA
(creators of the internet), it is required to form a business entity. Both JuliaLang and Dask have seen great success
with this path.

– Unfortunately, many grant application processes are explicitly reserved for individuals that are affiliated
with esteemed institutions, which makes them off limits for everyday citizens.

• In reality, the continued success of many open source projects, even those that are not directly associated with
a company, depends upon both funding and salaried contributors coming from corporate sponsors with which
they collaborate.

– This assistance naturally comes with a degree influence, sometimes formally in the shape of governance
roles. Forming your own company to help financially back the project helps the project creators have an
equal seat at the table of sponsors.

• In practice, when collaborating with large research institutes or R&D teams, they typically need: technical sup-
port to get up and running, consulting to help it fit their use cases, or they want to evaluate the technology on
their data through a trial consulting engagement.

• The most prominent AI labs, like OpenAI and DeepMind, have been able to champion open research in a corpo-
rate setting. That’s also where the best deep learning talent is going.

• The Global Alliance for Genomics & Health (GA4GH)] eventually had to organize for legal protection.

• Many biotech businesses offer either free or reduced pricing for students and academics as a healthy compromise.

• To paraphrase Isaacson’s, The Innovators,: “The first computer that was invented is sitting in a university base-
ment in Iowa gathering dust. However, the 2nd computer was manufactured by IBM. You could find it on every
professional desktop and point-of-sale counter in the world. It led the digital revolution.”

8.8. AIQC, Inc. is open core 95

https://www.ga4gh.org/
https://www.amazon.com/Innovators-Hackers-Geniuses-Created-Revolution/dp/1476708703


AIQC

8.9 Open source

8.9.1 Choosing a license

AIQC is made open source under the Berkeley Software Distribution (BSD) 3-Clause license. This license is approved
by the Open Source Initiative (OSI), which is preferred by NumFOCUS. 3-Clause BSD is used by notable projects
including: NumPy, Scikit-learn, Dask, Matplotlib, IPython, and Jupyter.

BSD is seen as a permissive license, as opposed to restrictive. The major implications are that people that incorporate
AIQC into their work are neither obligated to release their source code as open source, nor restricted to publishing their
work under the same license.

The simplest argument for AIQC adopting the BSD license is that AIQC uses upstream BSD projects.
Therefore, it should pay it forward by using the same license and allowing others the same freedom it
enjoys.

On one hand, the permissive nature of this license means that the cloud providers can fork this project
and release it as their own closed source cloud service, which has been a recurring theme [a, b, etc.]. On
the other hand, feedback from our friends in the Python community was that people would avoid using
libraries with restrictive licenses, like AGPL, in their work. They explained that they aren’t allowed to
open source their work and they “don’t want to get their legal team involved.” This begs the question, what
good is being open source under a restrictive license if no one can actually use your software? Hopefully
the cloud providers will put programs in place to contribute either code or profit (similar to the classic App
Store revenue-sharing model) back to the communities whose projects they fork.

Consideration of 4-Clause BSD; The original BSD license included an additional advertising clause that
states: “All advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by [. . . ].” Which helps, in part, to address
the widespread complaint of, “If you are going to fork our project, at least give us a nod.” We’ve actually
seen this play out at Datto. The company used software written by StorageCraft and Oracle for years, and
eventually they ended up adding a StorageCraft badge to their marketing collateral. It felt fair. However,
the advertising clause of 4-Clause BSD made it officially incompatible with GPL-licensed projects and, in
practice, 3-Clause BSD projects! The latter is the deciding factor. If we want to be a part of a BSD-based
community, then we cannot hinder it.

The copyright section is modeled after the IPython project.

Disclaimer; We still need to investigate BSD 3-Clause Clear and Apache 2.0 regarding patent & trademark rights.

96 Chapter 8. Open Source

https://github.com/aiqc/aiqc/blob/main/LICENSE
https://choosealicense.com/appendix/
https://numfocus.org/projects-overview
https://news.ycombinator.com/item?id=24799660
https://aws.amazon.com/blogs/opensource/introducing-opensearch/
https://www.datto.com/
https://github.com/ipython/ipython/blob/master/LICENSE


CHAPTER

NINE

COMPETITION

97



AIQC

98 Chapter 9. Competition



CHAPTER

TEN

MISSION

10.1 Why Does AIQC Exist?

Over the past 4 years, I worked with the top 5 pharmaceutical companies to analyze national biobanks, such as the UK
Biobank and Genomics Medicine Ireland, for the genomic-drivers of complex diseases.

In the face of such challenging & important problems, I was shocked that big pharma’s primary form of analysis was
the basic statistical test known as an association study, which dates back to the Victorian era. I kept expecting someone
to say, “Okay, now is the time for us to start using deep learning,” but it never happened. If the researchers at the most
well-financed companies in the world weren’t equipped to take advantage of AI, then how would it ever be possible for
non-profit scientists?

Deep learning has the power to accelerate the rate of scientific discovery by acting as a torch that reveals the laws of
nature through data-driven pattern recognition. When it comes to global crises like combatting pandemics and reversing
climate catastrophe, the human race is at a point where it needs to make major scientific advances over a short period
of time in order to survive. So let’s empower our smartest people with the best analytical tools we have.

99

https://en.wikipedia.org/wiki/Francis_Galton#Correlation_and_regression


AIQC

10.2 1. Accelerate science by making deep learning accessible.

• Reduce the amount of programming and data science know-how required to perform deep learning. This unattain-
able skillset trifecta causes machine learning to be underutilized in science. What would Newton & Einstein have
discovered with the power of deep learning?

• Provide field-specific deep learning solutions for research in the form of: pipelines for preprocessing scientific
file formats, pre-trained models for transfer learning, and visualizations of predictions.

10.3 2. Bring the scientific method to data science.

• Make machine learning less of a black box by implementing “Quality control (QC)” protocols comprised of best
practice validation rules.

• Reproducibly record not only the machine learning experiments, but also the lineage for preparing data. This is
important for combatting bias during the data gathering and evaluation phases.

10.4 3. Break down walled gardens to keep science open.

• This toolset provides research teams a standardized method for ML-based evidence, as opposed to each research
team cobbling together their own approach. An AIQC file should be submitted alongside publications and model
zoo entries as a proof.

• The majority of research doesn’t happen in the cloud, it’s performed on the personal computers of individuals. We
empower the non-cloud researchers: the academic/ institute HPCers, the remote server SSH’ers, and everyday
laptop warriors.

• If the entire scientific community does not have access to the toolset used to conduct the experiment, then it is
not reproducible.

• Kennedy - Peace; our survival demands unified, systematic action.

• Kennedy - Moon; lead the advancement of science for the good of mankind.

100 Chapter 10. Mission

https://youtu.be/0fkKnfk4k40?t=368
https://youtu.be/WZyRbnpGyzQ?t=183


AIQC

10.4. 3. Break down walled gardens to keep science open. 101



AIQC

102 Chapter 10. Mission



CHAPTER

ELEVEN

AIQC

103


	Install
	AIQC Python Package
	Environment Setup
	Python Version
	Pickle Disclaimer

	Operating System
	Optional - JupyterLab IDE
	Optional - Swap Space for Failover Memory

	Location of AIQC Files
	Location Based on OS
	Database
	Config

	Optional - Deleting the Database
	a) One-Liner
	b) Or Line-by-Line

	Troubleshooting
	Reloading the Package


	UI
	Experiment Tracker
	Compare Models Head-to-Head
	What-If Analysis
	Run the App
	What about JupyterDash?

	API
	Declarative
	1. Pipeline
	1a. Input
	1ai. Input.Interpolater
	1aii. Input.Window
	1aiii. Input.Encoder

	1b. Target
	1bi. Target.Interpolater
	1bii. Target.Encoder

	1c. Stratifier

	2. Experiment
	2a. Architecture
	2b. Trainer

	3. Inference

	ORM
	Object-Relational Model
	0. BaseModel
	0a. Methods
	0b. Attributes

	1. Dataset
	1a. Methods
	1ai. Registration
	1ai1. Dataset.Tabular
	1ai2. Dataset.Sequence
	1ai3. Dataset.Image

	1aii. Fetch

	1b. Attributes

	2. Feature
	2a. Methods
	2b. Attributes

	3. Label
	3a. Methods
	3b. Attributes

	4. Interpolate
	4a. LabelInterpolater
	4ai. Methods
	4aii. Attributes

	4b. FeatureInterpolater
	4bi. Methods
	4bii. Attributes


	5. Encode
	5a. LabelCoder
	5ai. Methods
	5aii. Attributes

	5b. FeatureCoder
	5bi. Methods
	5bii. Attributes


	6. Shape
	6a. Methods
	6b. Attributes

	7. Window
	7a. Methods
	7b. Attributes

	8. Splitset
	8a. Methods
	8b. Attributes

	9. Algorithm
	9a. Methods
	9b. Attributes

	10. Hyperparameters
	10a. Methods
	10b. Attributes

	11. Queue
	11a. Methods
	11b. Attributes

	12. Job
	12a. Methods
	12b. Attributes

	13. Predictor
	13a. Methods
	13b. Attributes

	14. Prediction
	14a. Methods
	14b. Attributes

	Evaluation

	Datasets
	Overview
	Prerequisites
	Prepackaged Local Data
	Remote Data
	Alternative Sources

	Evaluation
	Overview
	Prerequisites
	Classification
	Queue Visualization
	Queue Metrics
	Job Visualization
	Job Metrics
	Prediction Visualization
	Prediction Metrics

	Regression
	Queue Visualization
	Queue Metrics
	Job Visualization
	Job Metrics


	Deep Learning 101
	Open Source
	Purpose
	How can I get involved?
	How can I contribute?
	Setting up dev environment
	Programming style
	Code of conduct
	Guild bylaws (aka governance)
	AIQC, Inc. is open core
	Open source
	Choosing a license


	Competition
	Mission
	Why Does AIQC Exist?
	1. Accelerate science by making deep learning accessible.
	2. Bring the scientific method to data science.
	3. Break down walled gardens to keep science open.

	AIQC

