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AIQC Python Package


[ ]:





pip install --upgrade pip
pip install --upgrade wheel
pip install --upgrade aiqc







If during troubleshooting you find yourself reinstalling unwanted packages from the cache, then use:

pip install --upgrade --no-cache-dir aiqc





If that doesn’t work, read the rest of this notebook (e.g. supported Python versions).





Environment Setup

AIQC has many dependencies with specific versions, so we recommend creating a new virtual environment that is solely dedicated to AIQC using either PyEnv or Conda.


Python Version

Requires Python 3+ (check your deep learning library’s Python requirements). AIQC was developed on Python 3.7.12 in order to ensure compatibility with Google Colab.

Conda does not provide 3.7.12, but AIQC has been tested on 3.7.16 as well so you can use that version.

Additionally, check the Python version required by the machine learning libraries that you intend to use. For example, at the time this was written, Tensorflow/ Keras required Python 3.5–3.8. If you need more information about dependencies, the PyPI setup.py is in the root of the github.com/aiqc/aiqc repository.


[1]:





import sys
sys.version








[1]:







'3.7.12 (default, Dec 10 2021, 10:49:04) \n[Clang 13.0.0 (clang-1300.0.29.3)]'







Pickle Disclaimer

AIQC, much like PyTorch, relies heavily on Pickle [https://docs.python.org/3/library/pickle.html] for saving Python objects in its database. Therefore, as a caveat of Pickle, if you create objects in your aiqc.sqlite file using one version of Python and try to interact with it on a newer version of Python, then you may find that pickle is no longer able to deserialize the object. For this reason, sys.version and other helpful info about your OS/ Python version is stored in the
config.json file at the time of creation.




Operating System

AIQC was designed to be OS-agnostic. It has been tested on the following operating systems:


	macOS 10.15 and 11.6.1


	Linux (Ubuntu, Alpine, RHEL).


	Windows 10 (and WSL).


If you run into trouble with the installation process on your OS, please create a GitHub discussion so that we can attempt to resolve, document, and release a fix as quickly as possible.










Optional - JupyterLab IDE

AIQC runs anywhere Python runs. We just like Jupyter for interactive visualization and data transformation. FYI, jupyterlab is not an official dependency of the AIQC package.


[ ]:





pip install jupyterlab







JupyterLab requires Node.js >= 10. Once all extensions switch to JupyterLab 3.0 prebuilding, this will no longer be necessary.


[4]:





!node -v













v14.7.0








Optional - Swap Space for Failover Memory

On local machines, it is good practice to configure “swap space.” This way, if your processes run out of memory/ RAM, then the excess information will simply spill over onto the (potentially dynamically sized) swap partition of your hard drive, as opposed to causing an out-of-memory crash. For GB sized datasets, spinning media HDDs (5,400/ 7,200 RPM) may be too slow for usage with swap, but you could get by with NVMe/ SSD.






Location of AIQC Files

AIQC makes use of the Python package, appdirs, for an operating system (OS) agnostic location to store configuration and database files. This not only keeps your $HOME directory clean, but also helps prevent careless users from deleting your database.


The installation process checks not only that the corresponding appdirs folder exists on your system but also that you have the permissions neceessary to read from and write to that location. If these conditions are not met, then you will be provided instructions during the installation about how to create the folder and/ or grant yourself the appropriate permissions.

We have attempted to support both Windows (icacls permissions and backslashes C:\\) as well as POSIX including Mac and Linux including containers & Google Colab (chmod letters permissions and slashes /). Note: due to variations in the ordering of appdirs author and app directories in different OS’, we do not make use of the appdirs appauthor directory, only the appname directory.





Location Based on OS

Test it for yourself:

import appdirs; appdirs.user_data_dir('aiqc');






	Mac: /Users/Username/Library/Application Support/aiqc


	Linux - Alpine and Ubuntu: /root/.local/share/aiqc


	Windows: C:\Users\Username\AppData\Local\aiqc






Database

The database is simply a SQLite file, and AIQC serves as an ORM/ API for that SQL database.


So you *do not* have to worry about anything like installing a database server, database client, database users, configuring ports, configuring passwords/ secrets/ environment variables, or starting and restopping the database. Shoutout to the ORM, peewee [http://docs.peewee-orm.com/en/latest/index.html]. Glad we found this fantastic and simple alternative to SQLAlchemy.






Config

The configuration file contains low level information about: * Where AIQC should persist data. * Runtime (Python, OS) environment for reproducibility and troubleshooting.






Optional - Deleting the Database

If, for whatever reason, you find that you need to destroy your SQLite database file and start from scratch, then you can do so without having to manually find and rm the database file. In order to reduce the chance of an accident, confirm:bool=False by default.


Bear in mind that if you are on either a server or shared OS, then this database may contain more than just your data.





a) One-Liner

Both confirm:bool=False and rebuild:bool=False, so it only does what you command it to do.


[ ]:





from aiqc.orm import create_db, destroy_db








[4]:





destroy_db(confirm=True, rebuild=True)














=> Success - deleted database file at path:
/Users/layne/Library/Application Support/aiqc/aiqc.sqlite3


=> Success - created database file at path:
/Users/layne/Library/Application Support/aiqc/aiqc.sqlite3


💾  Success - created all database tables.  💾









b) Or Line-by-Line


[5]:





destroy_db(confirm=True)














=> Success - deleted database file at path:
/Users/layne/Library/Application Support/aiqc/aiqc.sqlite3








[6]:





create_db()














=> Success - created database file at path:
/Users/layne/Library/Application Support/aiqc/aiqc.sqlite3


💾  Success - created all database tables.  💾












Troubleshooting


Reloading the Package

After CRUD’ing the config files, AIQC needs the be reimported in order to detect those changes. This can be done in one of three ways:


	If everything goes smoothly, it should automatically happen behind the scenes: reload(sys.modules['aiqc']).


	Manually by the user: from importlib import reload; reload(aiqc).


	Manually restarting your Python kernel/ session and import aiqc.
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AIQC makes comparing and evaluating models effortless with its reactive Dash-Plotly [https://aiqc.medium.com/dash-is-deeper-than-dashboards-5ab7414f121e] user interface. The following dashboards put precalculated metrics & charts for each split/fold of every model right at your fingertips.


Reference the Evaluation section for more information about the plots and metrics.





Experiment Tracker

[image: tracker]

During the training process, practitioners continually improve their algorithm by experimenting with different combinations of architectures and parameters. This iterative process generates a lot of post-processing data, and it’s difficult to figure out which model is the best just by staring at hundreds of rows of raw data.



Compare Models Head-to-Head

[image: head2head]

The head-to-head comparison provides a deep dive that helps tease out the answers to challenging questions:


How does a practitioner know that ‘model A’ is actually better than ‘model B’ for their use case? Is one model slightly more biased than the other? What characteristics in the data is each model relying on? Can we get higher performance if we train for just a bit longer?






What-If Analysis

[image: sensitivity]

Ever wonder “What if?” By providing a dynamic user inferface for inference, AIQC allows you to tweak the inputs for a scenario in order to simulate its outcome.

Its applications are endless: Will the patient survive if their blood pressure drops? Will this drug be effective with 1 more rotational bond? Will the gene editing increase CO2 sequestration?


	By default, the feature inputs are populated with either the median numeric/ mode categoric value depending on their dtype. Metadata about the feature’s distribution can be seen by hovering over the column name.


	If feature importance was enabled during model evaluation, then the feature columns are presented in rank-order of median feature importance (as seen in the first row of the hover tooltip).


	The inputs are pre/post-processed via aiqc.mlops.Inference using the original model’s aiqc.mlops.Pipeline.


	Clicking the star uses BaseModel.flip_star() to toggle Prediction.is_starred as a favorite indicator.


	Right now this page is only configured for supervised analysis (regression, binary classification, multi-label classification) on tabular data. However, this foundation can easily be extended to support the other AIQC data/analysis combinations.








Run the App

The app must be launched from the command line as a Python module.

$ python -m aiqc.ui.app

Dash is running on http://127.0.0.1:9991/

 * Running on http://127.0.0.1:9991 (Press CTRL+C to quit)





If you attempt to terminate the server with CTRL+Z by accident, then the port will get hung. The freeport [https://pypi.org/project/freeport/] package makes it easy to release the port in this case.

The --port int and --debug mode are configurable.

$ python -m aiqc.ui.app --help

    usage: aiqc.ui.app [-h] [--port] [--debug] [--no-debug]

    Launch AIQC's Dash-Plotly UI for experiment tracking
    https://dash.plotly.com/devtools

    optional arguments:
      -h, --help  show this help message and exit
      --port      localhost:<port> to run on. Default=9991
      --debug     Raises errors and inspects callbacks.
      --no-debug  By default, neither raises errors nor inspects callbacks.





The page refreshes every 10 seconds.


If, for some reason, you find that your queries are taking longer than 10 seconds to finish, please start a discussion: https://github.com/aiqc/AIQC/discussions








What about JupyterDash?

Initially, the UI was built around jupyter_dash, which enabled running the Dash app within either a JupyterLab cell or tab. However, this approach was not stable for the following reasons:


	Hung & unkillable ports [https://github.com/plotly/jupyter-dash/issues/33]


	When _terminate_server_for_port was removed in v0.4.2, it became unusable.


	Werkzeug deprecation warnings [https://github.com/plotly/jupyter-dash/issues/63]




JupyterLab ships with a terminal. So technically the app can still be launched from within the JupyterLab user interface without resorting to Pythonic sys commands.
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[image: bb1ae68bd2d44552884479eb7ad80237]


Declarative

The High-Level API is declarative. What does that mean? All you have to do is specify the state that you want the data in, and then the backend executes all of the tedious data wrangling needed to achieve that state. It’s like Terraform for machine learning.

from aiqc.orm import Dataset
from aiqc.mlops import *






	Pipeline declares how to preprocess data.


	Experiment declares variations of models to train and evaluate.


	Inference declares new samples to predict.




Reference the tutorials to the see the high level API in action for various types of data and analysis. It’s declarative nature makes it easy to learn by reading examples as opposed to piecing together which arguments point to each other. Check back here if you get stuck.


Why so many pointer variables? – Under the hood, the High-Level API is actually chaining together a workflow using the object-relational model (ORM) of the Low-Level API. Many of the classes provided here are just an easier-to-use versions of their ORM counterparts.








1. Pipeline

Declares how to prepare data. The steps defined within the pipeline are used at multiple points in the machine learning lifecycle:


	Preprocessing of training and evaluation data.


	Caching of preprocessed training and evaluation data.


	Post-processing (e.g. decoding) during model evaluation.


	Inference: encoding and decoding new data.




Pipeline(
    inputs
    , target
    , stratifier
    , name
    , description
)













	Argument

	Type

	Default

	Description





	inputs

	list(Input)

	Required

	Input -
One or more featuresets



	target

	Target

	None

	Target -
Leave blank during
unsupervised/
self-supervised analysis.



	stratifier

	Stratifier

	None

	Stratifier
- Leave blank during
inference.



	name

	str

	None

	An auto-incrementing
version will be assigned to
Pipelines that share a
name.



	description

	str

	None

	Describes how this
particular workflow is
unique.







It is possible for an Input and a Target to share the same Dataset. The Input.include_columns and Input.exclude_columns will automatically be adjusted to exclude Target.column.










	Returns

	Splitset
instance as seen in the
Low-Level API. We will use
this later as the
Trainer.pipeline
argument.









1a. Input

These are the features that our model will learn from.

This is a wrapper for Feature and all of its preprocessors in the Low-Level API.

Input(
    dataset
    , exclude_columns
    , include_columns
    , interpolaters
    , window
    , encoders
    , reshape_indices
)













	Argument

	Type

	Default

	Description





	dataset

	Dataset

	Required

	Dataset
from Low-Level API



	exclude_columns

	list(str)

	None

	The columns from the
Dataset that will not be
used in the featureset



	include_columns

	list(str)

	None

	The columns from the
Dataset that will be used
in the featureset



	interpolaters

	list(Input.Interpolater)

	None

	Input.Interpolater



	window

	Input.Window

	None

	Input.Window



	encoders

	list(Input.Encoder)

	None

	Input.Encoder



	reshape_indices

	tuple(int/str/tuple)

	None

	Reference FeatureShaper
from Low-Level
API
.







Both exclude_columns and include_columns cannot be used simultaneously.







1ai. Input.Interpolater

Used to fill in the blanks in a sequence.

This is a wrapper for FeatureInterpolater in the Low-Level API.

Input.Interpolater(
    process_separately
    , verbose
    , interpolate_kwargs
    , dtypes
    , columns
)









1aii. Input.Window

Used to slice and shift samples into many time series windows for walk-forward/ backward analysis.

This is a wrapper for Window in the Low-Level API.

Input.Window(
    size_window
    , size_shift
    , record_shifted
)









1aiii. Input.Encoder

Used to numerically encode data.

This is a wrapper for FeatureCoder in the Low-Level API.

Input.Encoder(
    sklearn_preprocess
    , verbose
    , include
    , dtypes
    , columns
)










1b. Target

What the model is trying to predict.

This is a wrapper for Label and all of its preprocessors in the Low-Level API.

Target(
    dataset
    , column
    , interpolater
    , encoder
)













	Argument

	Type

	Default

	Description





	dataset

	Dataset

	Required

	Dataset from Low-Level API



	column

	list(str)

	None

	The column from the Dataset to use as the target.



	interpolater

	Target.Interpolater

	None

	Target.Interpolater



	encoder

	Target.Encoder

	None

	Target.Encoder









1bi. Target.Interpolater

Used to fill in the blanks in a sequence.

This is a wrapper for LabelInterpolater in the Low-Level API.

Target.Interpolater(
    process_separately
    , interpolate_kwargs
)









1bii. Target.Encoder

Used to numerically encode data.

This is a wrapper for LabelCoder in the Low-Level API.

Target.Encoder(
    sklearn_preprocess
)










1c. Stratifier

Used to slice the dataset into training, validation, test, and/or cross-validated subsets.

This is a wrapper for Splitset in the Low-Level API.

Stratifier(
    size_test
    , size_validation
    , fold_count
    , bin_count
)










2. Experiment

Used to declare variations of models that will be trained.

Experiment(
    architecture
    , trainer
)













	Argument

	Type

	Default

	Description





	architecture

	Architecture

	Required

	Architecture



	trainer

	Trainer

	Required

	Trainer












	Returns

	Queue instance as seen in the Low-Level API.









2a. Architecture

The model and hyperparameters to be trained.

This is a wrapper for Algorithm in the Low-Level API, with the addition of hyperparameters.

Architecture(
    library
    , analysis_type
    , fn_build
    , fn_train
    , fn_optimize
    , fn_lose
    , fn_predict
    , hyperparameters
)









2b. Trainer

The options used for training.

This is a wrapper for Queue in the Low-Level API, with the addition of pipeline.

Trainer(
    pipeline
    , repeat_count
    , permute_count
    , search_count
    , search_percent
)










3. Inference

Used to preprocess new samples, run predictions on them, decode the output, and, optionally, evaluate the predictions.

Inference(
    predictor
    , input_datasets
    , target_dataset
    , record_shifted
)













	Argument

	Type

	Default

	Description





	predictor

	Predictor

	Required

	Predictor
to use for inference



	input_datasets

	list(Dataset)

	Required

	New
Datasets
to run inference on.



	target_dataset

	Dataset

	None

	New
Datasets
for scoring inference.
Leave this blank for pure
inference where no metrics
will be calculared.



	record_shifted

	bool

	False

	Set this to True for
scoring during unsupervised
time series inference







We don’t need to specify fully-fledged Inputs and Target objects because the Pipeline of the predictor object will be reused in order to process these new datasets.










	Returns

	Prediction instance as seen in the Low-Level API.
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Object-Relational Model

The Low-Level API is an object-relational model for machine learning. Each class in the ORM [http://docs.peewee-orm.com/en/latest/peewee/models.html] maps to a table in a SQLite database that serves as a machine learning metastore.

The real power lies in the relationships between these objects (e.g. Label→Splitset←Feature and Queue→Job→Predictor→Prediction), which enable us to construct rule-base protocols for various types of data and analysis.

Goobye, X_train, y_test. Hello, object-oriented machine learning.

from aiqc.orm import *





Automatic ‘id’ method argument

If an ORM-based classes is instantiated, then any method called by the resulting object will automatically pass in the object’s self.id in as its first positional argument:

queue = Queue.get_by_id(id)
queue.run_jobs()





However, if the class has not been instantiated, then the id is required:

Queue.run_jobs(id)

Although I did not design this pattern, if you think about it, it makes sense. ORMs allow you to fluidly traverse relational objects. If you had to check the ``object.id`` of everything you returned before interacting with it, then that would ruin the user-friendly experience.









0. BaseModel

The BaseModel class applies to all tables in the ORM. It’s metadata in the truest sense of the word.

Localized timestamps are handled by utils.config.timezone_now() [https://github.com/aiqc/AIQC/blob/4743f8a36ca84dcebbf1b757c1969720bc15450b/aiqc/utils/config.py]. They are made human-readable via strftime('%Y%b%d_%H:%M:%S') → “2022Jun23_07:13:14”




0a. Methods



└── created_at()

Returns the creation timestamp in human-readable format.



└── updated_at()

Returns timestamp of the most recent update in human-readable format.



└── flip_star()

A way to toggle (favorite/ unfavorite) the is_starred attribute in order to make entries easy to find.



└── set_info()

Add descriptive information about an entry so that you remember why you created it

set_info(name, description)













	Argument

	Type

	Default

	Description





	name

	str

	None

	Short name to remember this entry by



	description

	str

	None

	What is unique about this entry?










0b. Attributes








	Attribute

	Type

	Description





	id

	AutoField

	Auto-incrementing integer
(1-based, not zero-based)
PrimaryKey



	time_created

	DateTimeField

	Records a timestamp when
the record is created



	time_updated

	DateTimeField

	Records a timestamp when
the record is created.
Overwritten every time the
record is updated.



	is_starred

	BooleanField

	Used to indicated that the
entry is a favorite



	name

	CharField

	Short name to remember this
entry by



	description

	CharField

	What is unique about this
entry?











1. Dataset

[image: Datasets]

The Dataset class provides the following subclasses for working with different types of data:









	Type

	Dimensionality

	Supported Formats

	Format (if ingested)





	Tabular

	2D

	Files (Parquet, CSV, TSV) / Pandas DataFrame (in-memory)

	Parquet



	Sequence

	3D

	NumPy (in-memory ndarray, npy file)

	npy



	Image

	4D

	NumPy (in-memory ndarray, npy file) / Pillow-supported formats

	npy







The names are merely suggestive, as the primary purpose of these subclasses is to provide a way to register data of known dimensionality. For example, a practitioner could ingest many uni-channel/ grayscale images as a 3D Sequence Dataset instead of a multi-channel 4D Image Dataset.





Why not 2D NumPy? The Dataset.Tabular class is intended for strict, column-specific dtypes and Parquet persistence upon ingestion. In practice, this conflicted too often with NumPy’s array-wide dtyping. We use the best tools for the job (df/pq for 2D) and (array/npy for ND).







1a. Methods


1ai. Registration

Most of the Dataset registration methods share these arguments/ concepts:







	Argument

	Description





	ingest

	Determines if raw data is
either stored directly
inside the metastore or
remains on disk to be
accessed via path/url.
In-memory data like
DataFrames and ndarrays
must be ingested. Whereas
file-based data like
Parquet, NPY, Image
folders/urls may remain
remote. Regardless of
whether or not the raw data
is ingested, metadata is
always derived from it by
parsing: 2D via DataFrame
and N-D via ndarray.



	rename_columns

	Useful for assigning column
names to arrays or
delimited files that would
otherwise be unnamed.
len(rename_columns)
must match the number of
columns in the raw data.
Normally, an int-based
range is assigned to
unnamed columns. In this
case, AIQC converts each
column name to a string
e.g. ‘1’ during the
registration process.



	retype

	Change the dtype of data
using
np.types [https://numpy.org/doc/stable/user/basics.types.html].
All Dataset subclasses
support mass typing via
np.type/
str(np.type). Only the
Tabular subclass supports
inidividual column retyping
via
dict(column=str(np.type))
``.
If ``rename_columns is
used in conjuction with
retype=dict(), then
each dict['column'] key
must match its counterpart
in rename_columns.



	description

	What information does this
dataset contain? What is
unique about this dataset/
version – did you edit the
raw data, add rows, or
change column names/
dtypes?



	name

	Triggers dataset
versioning. Datasets that
share a name will be
assigned an
auto-incrementing
version:int number
provided that they are not
duplicates of each other
based on a
sha256_hexdigest:str
hash. If you try to create
an exact duplicate, it will
warn you and return the
matching duplicate instead
of creating a new entity.
This behavior makes it easy
to rerun pipelines where
Datasets are created
inline.






Ingestion provides the following benefits, especially for entry-level users:


	Persist in-memory datasets (Pandas DataFrames, NumPy ndarrays).


	Keeps data coupled with the experiment in the portable SQLite file.


	Provides a more immutable and out-of-the-way storage location in comparison to a laptop file system.


	Encourages preserving tabular dtypes with the ecosystem-friendly Parquet format.




Why would I avoid ingestion?


	Happy with where the original data lives: e.g. S3 bucket.


	Don’t want to duplicate the data.





sha256? – It’s the one-way hash algorithm that GitHub aspires to upgrade to. AIQC runs it on compressed data because it’s easier and probably less-error prone than intercepting the bytes of the fastparquet intermediary tables before appending the Parquet magic bytes.





Is SQLite a legitimate datastore? – In many cases, SQLite queries are faster than accessing data via a filesystem. It’s a stable, 22 year-old technology that serves as the default database for iOS e.g. Apple Photos. AIQC uses it store raw data in byte format as a BlobField. I’ve stored tens-of-thousands of files in it over several years and never experienced corruption. Keep in mind that AWS S3 is blob store, and the Microsoft equivalent service is literally called Azure Blob Storage.
The max size of a BlobField is 2GB, so ~20GB after compression. Either way, the goal of machine learning isn’t to record the entire population within the weights of a neural network, it’s to find subsets that are representative of the broader population.







1ai1. Dataset.Tabular

Here are some of the ways practitioners can use this 2D structure:






	Multiple subjects (1 row
per sample) *
Multi-variate 1D (1 col per
attribute)



	Single subject (1 row per
timestamp) * Multi-variate
1D (1 col per attribute)



	Multiple subjects (1 row
per timestamp) *
Uni-variate 0D (1 col per
sample)







Tabular datasets may contain both features and labels






└── Dataset.Tabular.from_df()

dataset = Dataset.Tabular.from_df(
    dataframe
    , rename_columns
    , retype
    , description
    , name
)













	Argument

	Type

	Default

	Description





	df

	DataFrame

	Required

	pd.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas-dataframe]
with int-based single
index. DataFrames are
always ingested.



	rename_columns

	list[str]

	None

	See
Registration



	retype

	np.type /
dict(column:np.type)

	None

	See
Registration



	description

	str

	None

	See
Registration



	name

	str

	None

	See
Registration








└── Dataset.Tabular.from_path()

Dataset.Tabular.from_path(
    file_path
    , ingest
    , rename_columns
    , retype
    , header
    , description
    , name
)













	Argument

	Type

	Default

	Description





	file_path

	str

	Required

	Parsed based on how the
file name ends (.parquet,
.tsv, .csv)



	ingest

	bool

	True

	See
Registration.
Defaults to True because I
don’t want to rely on CSV
files as a source of truth
for dtypes, and compression
works great in Parquet.



	rename_columns

	list[str]

	None

	See
Registration



	retype

	np.type /
dict(column:np.type)

	None

	See
Registration



	header

	object

	None

	See
Registration



	description

	str

	None

	See
Registration



	name

	str

	None

	See
Registration










1ai2. Dataset.Sequence

Here are some of the ways practitioners can use this 3D structure:






	Single subject (1 patient) * Multiple 2D sequences



	Multiple subjects * Single 2D sequence







Sequence datasets are somewhat multi-modal in that, in order to perform supervised learning on them, they must eventually be paired with a Dataset.Tabular that acts as its Label.






└── Dataset.Sequence.from_numpy()

Dataset.Sequence.from_numpy(
    arr3D_or_npyPath
    , ingest
    , rename_columns
    , retype
    , description
    , name
)













	Argument

	Type

	Default

	Description





	arr3D_or_npyPath

	object / str

	Required

	3D array in the form of
either an
ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html]
or
npy [https://numpy.org/doc/stable/reference/generated/numpy.save.html]
file path



	ingest

	bool

	None

	See
Registration.
If left blank, ndarrays
will be ingested and npy
will not. Errors if ndarray
and False.



	rename_columns

	list[str]

	None

	See
Registration



	retype

	np.type /
dict(column:np.type)

	None

	See
Registration



	description

	str

	None

	See
Registration



	name

	str

	None

	See
Registration










1ai3. Dataset.Image

Here are some of the ways you can practitioners this 4D structure:






	Single subject (1 patient) * Multiple 3D images



	Multiple subjects * Single 3D image






Users can ingest 4D data using either: - The Pillow library, which supports various formats [https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html] - Or NumPy arrays as a simple alternative


Image datasets are somewhat multi-modal in that, in order to perform supervised learning on them, they must eventually be paired with a Dataset.Tabular that acts as its Label.






└── Dataset.Image.from_numpy()

Dataset.Image.from_numpy(
    arr4D_or_npyPath
    , ingest
    , rename_columns
    , retype
    , description
    , name
)













	Argument

	Type

	Default

	Description





	arr4D_or_npyPath

	object / str

	Required

	4D array in the form of
either an
ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html]
or
npy [https://numpy.org/doc/stable/reference/generated/numpy.save.html]
file path



	ingest

	bool

	None

	See
Registration.
If left blank, ndarrays
will be ingested and npy
will not. Errors if input
is ndarray and
ingest==False.



	rename_columns

	list[str]

	None

	See
Registration



	retype

	np.type /
dict(column:np.type)

	None

	See
Registration



	description

	str

	None

	See
Registration



	name

	str

	None

	See
Registration








└── Dataset.Image.from_folder()

Dataset.Image.from_folder(
    folder_path
    , ingest
    , rename_columns
    , retype
    , description
    , name
)













	Argument

	Type

	Default

	Description





	folder_path

	str

	Required

	Folder of images to be
ingested via Pillow. All
images must be cropped to
the same dimensions ahead
of time.



	ingest

	bool

	False

	See
Registration



	rename_columns

	list[str]

	None

	See
Registration



	retype

	np.type /
dict(column:np.type)

	None

	See
Registration



	description

	str

	None

	See
Registration



	name

	str

	None

	See
Registration








└── Dataset.Image.from_urls()

Dataset.Image.from_urls(
    urls
    , source_path
    , ingest
    , rename_columns
    , retype
    , description
    , name
)













	Argument

	Type

	Default

	Description





	urls

	list(str)

	Required

	URLs that point to an image
to be ingested via Pillow.
All images must be cropped
to the same dimensions
ahead of time.



	source_path

	str

	None

	Optionally record a shared
directory, bucket, or FTP
site where images are
stored. The backend won’t
use this information for
anything.



	ingest

	bool

	False

	See
Registration



	rename_columns

	list[str]

	None

	See
Registration



	retype

	np.type /
dict(column:np.type)

	None

	See
Registration



	description

	str

	None

	See
Registration



	name

	str

	None

	See
Registration











1aii. Fetch

The following methods are exposed to end-users in case they want to inspect the data that they have ingested.



└── Dataset.to_arr()









	Argument

	Type

	Default

	Description





	id

	int

	None

	The identifier of the Dataset of interest



	columns

	list(str)

	None

	If left blank, includes all columns



	samples

	list(int)

	None

	If left blank, includes all samples












	Subclass

	Returns





	Tabular

	ndarray.ndim==2



	Sequence

	ndarray.ndim==3



	Image

	ndarray.ndim==4








└── Dataset.to_df()









	Argument

	Type

	Default

	Description





	id

	int

	None

	The identifier of the Dataset of interest



	columns

	list(str)

	None

	If left blank, includes all columns



	samples

	list(int)

	None

	If left blank, includes all samples












	Subclass

	Returns





	Tabular

	DataFrame



	Sequence

	list(DataFrame)



	Image

	list(list(DataFrame))








└── Dataset.to_pillow()









	Argument

	Type

	Default

	Description





	id

	int

	None

	The identifier of the Dataset of interest



	samples

	list(int)

	None

	If left blank, includes all samples












	Subclass

	Returns





	Image

	list(PIL.Image)








└── Dataset.get_dtypes()









	Argument

	Type

	Default

	Description





	id

	int

	None

	The identifier of the Dataset of interest



	columns

	list(str)

	None

	If left blank, includes all columns






Regardless of how the initial Dataset.dtype was formatted [e.g. single np.type / str(np.type) / dict(column=np.type)], this function intentionally returns then dtype of each column within a dict(column=str(np.type) format.






1b. Attributes

These are the fields in the Dataset table








	Attribute

	Type

	Description





	typ

	CharField

	The Dataset type: Tabular,
Sequence, Image



	source_format

	CharField

	The file format (Parquet,
CSV, TSV) or in-memory
class (DataFrame, ndarray)



	source_path

	CharField

	The path of the original
file/ folder



	urls

	JSONField

	A list of URLs as an
alternative to file paths/
folders



	columns

	JSONField

	List of str-based names for
each column



	dtypes

	JSONField

	The type of each column.
Tabular dtype is saved in
dict(column=str(np.type))
``
format. Where Sequence and
Image dtype is saved in a
singular ``str(np.type)



	shape

	JSONField

	Human-readable dictionary
about the dimensions of the
data e.g.
samples:10, columns:5



	sha256_hexdigest

	CharField

	A hash of the data to
determine its uniqueness
for versioning.



	memory_MB

	IntegerField

	Size of the dataset in
megabytes when loaded into
memory



	contains_nan

	BooleanField

	Whether or not the dataset
contains any blank cells



	header

	PickleField

	pd.read_csv(header) for
TSV/CSV files.



	is_ingested

	BooleanField

	Quick flag to see if the
data was ingested. Exists
to prevent querying the
blob field
unnecessarily.



	blob

	BlobField

	The raw bytes of the data
obtained via
BytesIO().getvalue



	version

	IntegerField

	The auto-incrementing
version number assigned to
unique datasets that share
name











2. Feature

Determines the columns that will be used as predictive features during training. Columns is always the last dimension shape[-1] of a dataset.




2a. Methods



└── Feature.from_dataset()

Feature.from_dataset(
    dataset_id
    , include_columns
    , exclude_columns
)













	Argument

	Type

	Default

	Description





	dataset_id

	int

	Required

	Dataset.id from which
you want to derive
Dataset.columns.



	include_columns

	list(str)

	None

	Specify columns that will
be included in the Feature.
All columns that are not
specified will not be
included.



	exclude_columns

	list(str)

	None

	Specify columns that will
not be included in the
Feature. All columns that
are not specified will be
included.







If neither include_columns nor exclude_columns is defined, then all columns will be used.





Both include_columns and exclude_columns cannot be used at the same time






Fetch

Theses methods wrap Dataset’s fetch methods:








	Method

	Arguments

	Returns





	to_arr()

	id:int,
columns:list(str)=Feature.c
olumns,
samples:list(int)=None

	ndarray 2D / 3D / 4D



	to_df()

	id:int,
columns:list(str)=Feature.c
olumns,
samples:list(int)=None

	df / list(df) /
list(list(df))



	get_dtypes()

	id:int,
columns:list(str)=Feature.c
olumns

	dict(column=str(np.type))










2b. Attributes

These are the fields in the Feature table








	Attribute

	Type

	Description





	columns

	JSONField

	The columns included in
this featureset



	columns_excluded

	JSONField

	The columns, if any, in the
dataset that were not
included



	fitted_featurecoders

	PickleField

	When FeatureCoder’s
fit an sklearn
preprocessor to these
columns, the fit objects
are saved here for
downstream
inverse_transform’ing



	dataset

	ForeignKeyField

	Where these columns came
from











3. Label

Determines the column(s) that will be used as a target during supervised analysis. Do no create a Label if you intend to conduct unsupervised/ self-supervised analysis.




3a. Methods



└── Label.from_dataset()

Label.from_dataset(
    dataset_id
    , columns
)













	Argument

	Type

	Default

	Description





	dataset_id

	int

	Required

	Dataset.id from which
you want to derive
Dataset.columns. Only
Tabular Datasets may be
used as a Label.



	columns

	list(str)

	None

	Specify columns that will
be included in the Label.
If left blank, defaults to
all columns. If more than 1
column is provided, then
the data in those columns
must be in One-Hot Encoded
(OHE) format.








Fetch

Theses methods wrap Dataset’s fetch methods:








	Method

	Arguments

	Returns





	to_arr()

	id:int,
columns:list(str)=Label.col
umns,
samples:list(int)=None

	ndarray 2D / 3D / 4D



	to_df()

	id:int,
columns:list(str)=Label.col
umns,
samples:list(int)=None

	df / list(df) /
list(list(df))



	get_dtypes()

	id:int,
columns:list(str)=Label.col
umns

	dict(column=str(np.type))










3b. Attributes

These are the fields in the Feature table








	Attribute

	Type

	Description





	columns

	JSONField

	The column(s) included in
this featureset.



	column_count

	IntegerField

	The number of columns in
the Label. Used to
determine if it is in
validated OHE format or not



	unique_classes

	JSONField

	Records all of the
different values found in
categorical columns. Not
used for continuous
columns.



	fitted_labelcoder

	PickleField

	When a LabelCoder
fit’s an sklearn
preprocessor to these
columns, the fit objects
are saved here for
downstream
inverse_transform’ing



	dataset

	ForeignKeyField

	Where these columns came
from











4. Interpolate

If you don’t have time series data then you do not need interpolation.

If you have continuous columns with missing data in a time series, then interpolation allows you to fill in those blanks mathematically. It does so by fitting a curve to each column. Therefore each column passed to an interpolater must satisfy: np.issubdtype(dtype, np.floating).

Interpolation is the first preprocessor because you need to fill in blanks prior to encoding.


pandas.DataFrame.interpolate

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.interpolate.html

Is utilized due to its ease of use, variety of methods, and support of sparse indices. However, it does not follow the fit/transform pattern like many of the class-based sklearn preprocessors, so the interpolated training data is concatenated with the evalaution split during the interpolation of evaluation splits.




Below are the default settings if interpolate_kwargs=None that get passed to df.interpolate(). In my experience, method=spline produces the best results. However, if either (a) spline fails to fit to your data, or (b) you know that your pattern is linear - then try method=linear.

interpolate_kwargs = dict(
    method            = 'spline'
    , limit_direction = 'both'
    , limit_area      = None
    , axis            = 0
    , order           = 1
)





Because the sample dimension is different for each Dataset Type, they approach interpolation differently.







	Dataset Type

	Approach





	Tabular

	Unlike encoders, there is
no fit object. So first
the training data rows are
interpolated independently.
Then, when it comes time to
interpolate other splits
like validation, the
training data is included
in the sequence to be
interpolated.



	Sequence

	Interpolation is ran on
each 2D sequence separately



	Image

	Interpolation is ran on
each 2D channel separately









4a. LabelInterpolater

Label is intended for a single column, so only 1 Interpolater will be used during Label.preprocess()




4ai. Methods

└── LabelInterpolater.from_label()

LabelInterpolater.from_label(
    label_id
    , process_separately
    , interpolate_kwargs
)













	Argument

	Type

	Default

	Description





	label_id

	int

	Required

	Points to the
Label.columns to use



	process_separately

	bool

	True

	Used to restrict the fit to
the training data, this may
be flipped to False.
However, doing so causes
data leakage.



	interpolate_kwargs

	dict

	None

	Gets passed to
df.interpolate(). See
Interpolate
section for defaults.










4aii. Attributes

These are the fields in the LabelInterpolater table








	Attribute

	Type

	Description





	process_separately

	BooleanField

	Whether or not the training
data was interpolated by
fitting to the entire
dataset or not. Indicator
of data leakage.



	interpolate_kwargs

	JSONField

	Gets passed to
df.interpolate(). See
Interpolate
section for defaults.



	matching_columns

	JSONField

	The columns that were
successfully interpolated



	label

	ForeignKeyField

	The Label that this
LabelInterpolater is
applied to











4b. FeatureInterpolater

For multivariate datasets, columns/dtypes may need to be handled differently. So we use column/dtype filters to apply separate transformations. If the first transformation’s filter includes a certain column/dtype, then subsequent filters may not include that column/dtype.




4bi. Methods

└── FeatureInterpolater.from_feature()

FeatureInterpolater.from_feature(
    feature_id
    , process_separately
    , interpolate_kwargs
    , dtypes
    , columns
    , verbose
)













	Argument

	Type

	Default

	Description





	feature_id

	int

	Required

	Points to the
Feature.columns to use



	process_separately

	bool

	True

	Used to restrict the fit to
the training data, this may
be flipped to False.
However, doing so causes
data leakage.



	interpolate_kwargs

	dict

	None

	The
interpolate_kwargs:dict=N
one
object is what gets passed
to Pandas interpolation. In
my experience,
method=spline produces
the best results. However,
if either (a) spline fails
to fit to your data, or (b)
you know that your pattern
is linear - then try
method=linear.



	dtypes

	list(str)

	None

	The dtypes to include



	columns

	list(str)

	None

	The columns to include.
Errors if any of the
columns were already
included by dtypes.



	verbose

	bool

	True

	If True, messages will be
printed about the status of
the interpolaters as they
attempt to fit on the
filtered columns










4bii. Attributes

These are the fields in the FeatureInterpolater table








	Attribute

	Type

	Description





	idx

	IntegerField

	Zero-based auto-incrementer
that counts the number of
FeatureInterpolaters
attached to a Feature.



	process_separately

	BooleanField

	Whether or not the training
data was interpolated by
fitting to the entire
dataset or not. Indicator
of data leakage.



	interpolate_kwargs

	JSONField

	Gets passed to
df.interpolate(). See
Interpolate
section for defaults.



	matching_columns

	JSONField

	The columns that matched
the filter



	leftover_columns

	JSONField

	The columns that were not
included in the filter



	leftover_dtypes

	JSONField

	The dtypes that were not
included in the filter



	original_filter

	JSONField

	dict().keys()==['include'
,'dtypes','columns']



	feature

	ForeignKeyField

	The Feature that this
FeatureInterpolater is
applied to












5. Encode

Transform data into numerical format that is close to zero. Reference Encoding [https://docs.aiqc.io/pages/explainer.html] for more information.

There are two phases of encoding: 1. fit on train - where the encoder learns about the values of the samples made available to it. Ideally, you only want to fit aka learn from your training split so that you are not leaking [https://towardsdatascience.com/data-leakage-5dfc2e0127d4] information from your validation and test spits into your model! However, categorical encoders are always fit on the entire dataset because they are not prone to leakage and any weights tied to empty OHE
inputs will zero-out. 2. transform each split/fold


Only sklearn.preprocessing [https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing] methods are officially supported, but we have experimented with sklearn.feature_extraction.text.CountVectorizer







5a. LabelCoder

Label is intended for a single column, so only 1 LabelCoder will be used during Label.preprocess()


Unfortunately, the name “LabelEncoder” is occupied by sklearn.preprocessing.LabelEncoder







5ai. Methods

└── LabelCoder.from_label()

LabelCoder.from_label(
    label_id
    , sklearn_preprocess
)













	Argument

	Type

	Default

	Description





	label_id

	int

	Required

	Points to the
Label.columns to use



	sklearn_preprocess

	object

	Required

	An instantiated
sklearn.preprocessing
class-based encoder - e.g.
StandardScaler()
neither StandardScaler
nor scale(). AIQC will
automatically correct the
attributes of your encoder
to smooth out any common
errors they would cause.
For example, preventing
sparse SciPy matrix output
(errors during tensor
conversion) and data
copy().










5aii. Attributes

These are the fields in the LabelCoder table








	Attribute

	Type

	Description





	only_fit_train

	BooleanField

	Whether or not the encoder
was fit on the training
data or the entire dataset



	is_categorical

	BooleanField

	If the encoder is meant for
categorical data, and
therefore automatically fit
on the entire dataset



	sklearn_preprocess

	PickleField

	The instantiated
sklearn.preprocessing class
that was fit



	matching_columns

	JSONField

	The columns that matched
the dtype/ column name
filters



	encoding_dimension

	CharField

	Did the encoder succeed on
1D/ 2D uni-column/ 2D
multi-column?



	label

	ForeignKeyField

	The Label that this
LabelCoder is applied to











5b. FeatureCoder

For multivariate datasets, columns/dtypes may need to be handled differently. So we use column/dtype filters to apply separate transformations. If the first transformation’s filter includes a certain column/dtype, then subsequent filters may not include that column/dtype.




5bi. Methods

└── FeatureCoder.from_feature()

FeatureCoder.from_feature(
    feature_id
    , sklearn_preprocess
    , include
    , dtypes
    , columns
    , verbose
)













	Argument

	Type

	Default

	Description





	feature_id

	int

	Required

	Points to the
Feature.columns to use



	sklearn_preprocess

	object

	Required

	An instantiated
sklearn.preprocessing
class-based encoder - e.g.
StandardScaler()
neither StandardScaler
nor scale(). AIQC will
automatically correct the
attributes of your encoder
to smooth out any common
errors they would cause.
For example, preventing
sparse SciPy matrix output
(errors during tensor
conversion) and data
copy().



	include

	bool

	True

	Whether to include or
exclude the dtypes/columns
that match the filter. You
can create a filter for all
columns by setting
include=False and then
setting both dtypes and
columns to None.



	dtypes

	list(str)

	None

	The dtypes to filter



	columns

	list(str)

	None

	The columns to filter.
Errors if any of the
columns were already used
by dtypes.



	verbose

	bool

	True

	If True, messages will be
printed about the status of
the encoders as they
attempt to fit on the
filtered columns










5bii. Attributes

These are the fields in the FeatureCoder table








	Attribute

	Type

	Description





	idx

	IntegerField

	Zero-based auto-incrementer
that counts the number of
FeatureCoders attached to a
Feature.



	sklearn_preprocess

	PickleField

	The instantiated
sklearn.preprocessing class
that was fit



	encoded_column_names

	JSONField

	After the columns are
encoded, what are their
names? OHE appends
_<category> to the
original column names as it
expands



	matching_columns

	JSONField

	The columns that matched
the filter



	leftover_columns

	JSONField

	The columns that were not
included in the filter



	leftover_dtypes

	JSONField

	The dtypes that were not
included in the filter



	original_filter

	JSONField

	dict().keys()==['include'
,'dtypes','columns']



	encoding_dimension

	CharField

	Did the encoder succeed on
1D/ 2D uni-column/ 2D
multi-column?



	only_fit_train

	BooleanField

	Whether or not the encoder
was fit on the training
data or the entire dataset



	is_categorical

	BooleanField

	If the encoder is meant for
categorical data, and
therefore automatically fit
on the entire dataset



	feature

	ForeignKeyField

	The Feature that this
FeatureCoder is applied to












6. Shape

Changes the shape of data. Only supports Features, not Labels.

Reshaping is applied at the end of Feature.preprocess(). So if the feature data has been altered via time series windowing or One Hot Encoder, then those changes will be reflected in the shape that is fed to `

When working with architectures that are highly dimensional such convolutional and recurrent networks (Conv1D, Conv2D, Conv3D / ConvLSTM1D, ConvLSTM2D, ConvLSTM3D), you’ll often find yourself needing to reshape data to fit a layer’s required input shape.


	Reducing unused dimensions - When working with grayscale images (1 channel, 25 rows, 25 columns) it’s better to use Conv1D instead of Conv2D.


	Adding wrapper dimensions - Perhaps your data is a fit for ConvLSTM1D, but that layer is only supported in the nightly TensorFlow build so you want to add a wrapper dimension in order to use the production-ready ConvLSTM2D.




AIQC favors a “channels_first” (samples, channels, rows, columns) approach as opposed to “channels_last” (samples, rows, columns, channels).


Can’t I just reshape the tensors during the training loop? You could. However, AIQC systemtically provides the shape of features and labels to Algorith.fn_build to make designing the topology easier, so it’s best to get the shape right beforehand. Additionally, if you reshape your data within the training loop, then you may also need to reshape the output of Algorithm.fn_predict so that it is correctly formatted for automatic post-processing. It’s also more computationally
efficient to do the reshaping once up front.






The reshape_indices argument is ultimately fed to np.reshape(newshape) [https://numpy.org/doc/stable/reference/generated/numpy.reshape.html]. We use index n to point to the value at ndarray.shape[n].

Reshaping by Index

Let’s say we have a 4D feature consisting of 3D images (samples * channels * rows * columns). Our problems is that the images are B&W, so we don’t want a color channel because it would add unecessary dimensionality to our model. So we want to drop the dimension at the shape index 1.

reshape_indices = (0,2,3)





Thus we have wrangled ourselves a 3D feature consisting of 2D images (samples * rows * columns).

Reshaping Explicitly

But what if the dimensions we want cannot be expressed by rearranging the existing indices? If you define a number as a str, then that number will be used as directly as the value at that position.

So if I wanted to add an extra wrapper dimension to my data to serve as a single color channel, I would simply do:

reshape_indices = (0,'1',1,2)






Then couldn’t I just hardcode my shapes with strings? Yes, but FeatureShaper is applied to all of the splits, which are assumed to have different shapes, which is why we use the indices.




Multiplicative Reshaping

Sometimes you need to stack/nest dimensions. This requires multiplying one shape index by another.

For example, if I have a 3 separate hours worth of data and I want to treat it as 180 minutes, then I need to go from a shape of (3 hours * 60 minutes) to (180 minutes). Just provide the shape indices that you want to multiply in a tuple like so:


<!> if your model is unsupervised (aka generative or self-supervised), then it must output data in “column (aka width) last” shape. Otherwise, automated column decoding will be applied along the wrong dimension.







6a. Methods

└── FeatureShaper.from_feature()

FeatureShaper.from_feature(
    feature_id
    , reshape_indices
)













	Argument

	Type

	Default

	Description





	feature_id

	int

	Required

	The Feature.id to use



	reshape_indices

	tuple(int/str/tuple)

	Required

	See Strategies.










6b. Attributes

These are the fields of the FeatureShaper table








	Attribute

	Type

	Description





	reshape_indices

	PickleField

	See
#Reshaping-by-Index.Pickle
because tuple has no JSON
equivalent.



	column_position

	IntegerField

	The shape index used for
columns aka width.



	feature

	ForeignKeyField

	The Feature that reshaping
is applied to.











7. Window

Window facilitates sliding windows for a time series Feature. It does not apply to Labels. This is used for unsupervised (aka self-supervised) walk-forward forecasting for time series data.

size_window determine how many timepoints are included in a window, and size_shift determines how many timepoints to slide over before defining a new window.


For example, if we want to be able to predict the next 7 days worth of weather using the past 21 days of weather, then our size_window=21 and our size_shift=7.






Challenges

Dealing with stratified windowed data demands a systematic approach.

[image: windowDimensions]

Windowing always increases dimensionality

After data is windowed, its dimensionality increases by 1. Why? Well, originally we had a single time series. However, if we window that data, then we have many time series subsets.

[image: interpolateWindows]

As the highest dimension, it becomes the “sample”

No matter what dimensionality the original data has, it will be windowed along the first dimension.

This means that the windows now serve as the samples, which is important for stratification. If we have a year’s worth of windows, we don’t want all of our training windows to come from the same season. Therefore, Window must be created prior to Splitset.

Windowing may causes overlap in splits

In addition to increasing the dimensionality of our data, it makes it harder to nail down the boundaries of our splits in order to prevent data leakage.

As seen in the diagram above, the timesteps of the train and test splits may overlap. So if we are fitting an interpolater to our training split, the first 3 NaNs would be included, but the last 2 would not.

[image: Windows]

Shifted and unshifted windows

In a walk-forward analysis, we learn about the future by looking at the past. So we need 2 sets of windows:


	Unshifted windows (orange in diagram above): represent the past and serves as the features we learn from


	Shifted windows (green in diagram above): represent the future and serves as the target we predict




However, when conducting inference, we are trying to predict the shifted windows not learn from them. So we don’t need to record any shifted windows.




7a. Methods

└── Window.from_feature()

Window.from_feature(
    feature_id
    , size_window
    , size_shift
    , record_shifted
)













	Argument

	Type

	Default

	Description





	dataset_id

	int

	Required

	Feature.id from which
you want to derive windows.



	size_window

	int

	Required

	The number of timesteps to
include in a window.



	size_shift

	int

	Required

	The number of timesteps to
shift forward.



	record_shifted

	bool

	True

	Whether or not we want to
keep a shifted set of
windows around. During pure
inference, this is False.










7b. Attributes

These are the fields of the Window table








	Attribute

	Type

	Description





	size_window

	IntegerField

	Number of timesteps in each
window



	size_shift

	IntegerField

	The number of timesteps in
the shift forward.



	window_count

	IntegerField

	Not a relationship count!
Number of windows in the
dataset. This becomes the
new samples dimension for
stratification.



	samples_unshifted

	JSONField

	Underlying sample indices
of each window in the
past-shifted windows.



	samples_shifted

	JSONField

	Underlying sample indices
of each window in the
future-shifted windows.



	feature

	ForeignKeyField

	The Feature that this
windowing is applied to











8. Splitset

Used for sample stratification. Reference Stratification [https://docs.aiqc.io/pages/explainer.html] section of the Explainer.







	Split

	Description





	train

	The samples that the model
will be trained upon.
Later, we’ll see how we can
make cross-folds from our
training split.
Unsupervised learning will
only have a training split.



	validation (optional)

	The samples used for
training evaluation.
Ensures that the test set
is not revealed to the
model during training.



	test (optional)

	The samples the model has
never seen during training.
Used to assess how well the
model will perform on
unobserved, natural data
when it is applied in the
real world aka how
generalizable it is.







Because Splitset groups together all of the data wrangling entities (Features, Label, Folds) it essentially represents a Pipeline, which is why it bears the name Pipeline in the High-Level API.






Cross-Validation

Cross-validation is triggered by fold_count:int during Splitset creation. Reference the scikit-learn documentation [https://scikit-learn.org/stable/modules/cross_validation.html] to learn more about cross-validation.

[image: CrossFoldBins]

Each row in the diagram above is a Fold object.

Each green/blue box represents a bin of stratified samples. During preprocessing and training, we rotate which blue bin serves as the validation samples (fold_validation). The remaining green bins in the row serve as the training samples (folds_train_combined).

Let’s say we defined fold_count=5. What are the implications?


	Creates 5 Folds related to a Splitset.


	5x more preprocessing and caching; each fold_validation is excluded from the fit on folds_train_combinared. Fits are saved to the orm.Fold object as opposed to the orm.Feature/Label objects.


	5x more models will be trained for each experiment.


	5x more evaluation.




Disclaimer about inherent limitations & challenges


Do not use cross-validation unless the distribution of each resulting fold (total sample count divided by fold_count) is representatitve of your broader sample population. If you are ignoring that advice and stretching to perform cross-validation, then at least ensure that the total sample count is evenly divisble by fold_count. Both of these tips help avoid poorly stratified/ undersized folds that seem to perform either unjustifiably well (100% accuracy when only the most common label
class is present) or poorly (1 incorrect prediction in a small fold negatively skews an otherwise good model).

If you’ve ever performed cross-validation manually with too few samples, then you’ll know that it’s easy enough to construct the folds, but then it’s a pain to calculate performance metrics (e.g. zero_division, absent OHE classes) due to the absence of outlying classes and bins. Time has been invested to handle these scenarios elegantly so that folds can be treated as first-class-citizens alongside splits. That being said, if you try to do something undersized like multi-label
classification using 150 samples then you may run into errors during evaluation.






Samples Cache

Each Splitset has as cache_path attribute, which represents a local directory where preprocessed data is stored during training & evaluation.

The output of feature.preprocess() and label.preprocess() are written to this folder prior to training so that:


	Each Job does not have to preprocess data from scratch.


	The original data does not need to be held in memory between Jobs.




└── aiqc/cache/samples/splitset_uid
    └── <fold_index> | "no_fold"
        └── <split>
            └── label.npy
            └── feature_<i>.npy






	<fold_index> is a folder for each Fold, since they have different samples. Whereas “no_fold” is a single folder for a regular splitset where there are no folds. ‘no_fold’ just keeps the folder depth uniform for regular splitsets


	<split>: The samples[<split>] of interest: ‘train’, ‘validation’, ‘folds_train_combined’, ‘fold_validation’, ‘test’.


	feature_<n> accounts for Splitsets with more than 1 Feature.




The Splitset.cache_hot:bool argument indicates whether or not the cache for that splitset is populated or not.

Samples are automatically cached during Queue.run_jobs().

See also: orm.splitset.clear_cache() and utils.config.clear_cache_all()




8a. Methods



└── Splitset.make()

Splitset.make(
    feature_ids
    , label_id
    , size_test
    , size_validation
    , bin_count
    , fold_count
    , unsupervised_stratify_col
    , name
    , description
    , predictor_id
)













	Argument

	Type

	Default

	Description





	feature_ids

	list(int)

	Required

	Multiple Feature.id’s
may be included to enable
multi-modal (aka mixed
data-type) analysis. All of
these Features must have
the same number of samples.



	label_id

	int

	None

	The Label to be used as a
target for supervised
analysis. Must have the
sample number of samples as
the Features.



	size_test

	float

	None

	Percent of samples to be
placed into the test split.
Must be > 0.0 and
< 1.0.



	size_validation

	float

	None

	Percent of samples to be
placed into the validation
split. Must be > 0.0
and < 1.0. If this is
not None and used in
combination with
fold_count, then there
will be 4 splits.



	bin_count

	int

	None

	For continous
stratification columns, how
many bins (aka quantiles)
should be used?



	fold_count

	int

	None

	The number or
cross-validation folds to
generate. See
Cross-Validation.



	unsupervised_stratify_c
ol

	str

	None

	Used during unsupervised
analysis. Specify a column
from the first Feature in
feature_ids to use for
stratification. For
example, when forecasting,
it may make sense to
stratify by the day of the
year.



	name

	str

	None

	Used for versioning a
pipeline (collection of
inputs, label, and
stratification). Two
versions cannot have
identical attributes.



	description

	str

	None

	What is unique about this
this pipeline?







size_train = 1.00 - (size_test + size_validation) the backend ensures that the sizes sum to 1.00





How does continuous binning work? Reference the handy Pandas.qcut() and the source code pd.qcut(x=array_to_bin, q=bin_count, labels=False, duplicates='drop') for more detail.






└── Splitset.cache_samples()

See Samples Cache section for a description

Splitset.cache_samples(id)













	Argument

	Type

	Default

	Description





	id

	int

	Required

	The identifier of the Splitset of interest








└── Splitset.clear_cache()

See Samples Cache section for a description. Deletes the entire directory located at Splitset.cache_path.

Splitset.clear_cache(id)













	Argument

	Type

	Default

	Description





	id

	int

	Required

	The identifier of the Splitset of interest








└── Splitset.fetch_cache()

See Samples Cache section for a description. This fetches a specific file from the cache.

Splitset.fetch_cache(
    id
    , split
    , label_features
    , fold_id
    , library
)













	Argument

	Type

	Default

	Description





	id

	int

	Required

	The identifier of the
Splitset of interest



	split

	int

	Required

	The samples[<split>] of
interest: ‘train’,
‘validation’,
‘folds_train_combined’,
‘fold_validation’, ‘test’.



	label_features

	str

	Required

	Either 'label' or
'features'



	fold_id

	int

	None

	The identifier of the Fold
of interest, if any



	library

	str

	None

	If 'pytorch', it will
convert each returned array
to FloatTensor()












	label_features Value

	Returns





	'label'

	ndarray



	'features'

	ndarray or list(ndarray)










8b. Attributes

These are the fields of the Splitset table








	Attribute

	Type

	Description





	cache_path

	CharField

	Where the splitset stores
its cached samples



	cache_hot

	BooleanField

	If the samples are
currently stored in the
cache



	samples

	JSONField

	The bins that splits have
been stratified into
dict(split=[sample_indice
s])



	sizes

	JSONField

	Human-readable sizes of the
splits
dict(split=dict(percent=f
loat,count=int))



	supervision

	CharField

	Either “supervised” or
“unsupervised” if the
Splitset has a Label.



	has_validation

	BooleanField

	Logical flag indicating if
this Splitset has a
validation split.



	fold_count

	IntegerField

	The number of
cross-validation Folds
that belong to this
Splitset



	bin_count

	IntegerField

	The number of bins used to
stratify a continuous
column label or
unsupervised_stratify
column



	**unsupervised_stratifyCol
**

	CharField

	Used during unsupervised
analysis. Specify a column
from the first Feature in
feature_ids to use for
stratification. For
example, when forecasting,
it may make sense to
stratify by the day of the
year.



	key_train

	CharField

	'train' by default, but
'folds_train_combined'
if Splitset has Folds.
None for an inference
splitset.



	key_evaluation

	CharField

	'test' if neither
validation split nor Folds
are used. 'validation'
if a validation split is
used. 'fold_validation'
if Splitset has Folds.
None for an inference
splitset.



	key_test

	CharField

	'test' by default.
None for an inference
splitset.



	version

	IntegerField

	[TBD]



	label

	ForeignKeyField

	The Label, if any, that
supervises this splitset



	predictor

	DeferredForeignKey

	During inference, a new
Splitset of samples to be
predicted may attach to a
Predictor. Samples dict
will bear the key of the
Predictor.Splitset.count(
)
e.g. 'infer_0'.






These are the fields of the Fold table








	Attribute

	Type

	Description





	idx

	IntegerField

	Zero-based auto-incrementer
that counts the Folds



	samples

	JSONField

	Contains the sample indices
of the training folds and
leftout validation fold, as
well as any validation and
test splits defined in the
regular Splitset.samples
dict().keys()==['folds_tr
ain_combined', 'fold_valida
tion', 'validation', 'test'
]



	fitted_labelcoder

	PickleField

	When LabelCoders’s
fit an sklearn
preprocessor, the fit
objects are saved here for
downstream
inverse_transform’ing



	fitted_featurecoders

	PickleField

	When FeatureCoder’s
fit an sklearn
preprocessor, the fit
objects are saved here for
downstream
inverse_transform’ing



	splitset

	ForeignKeyField

	The Splitset that this Fold
belongs to











9. Algorithm

Now that our data has been prepared, we transition to the 2nd half of the ORM where the focus is the logic that will be applied to that data.

The Algorithm contains all of the components needed to construct, train, and use our model.

Reference the tutorials for examples of how Algorithms are defined.



PyTorch Fit

Provides an abstraction that eliminates the boilerplate code normally required to train and evaluate a PyTorch model.


	Before training - it shuffles samples, batches samples, and then shuffles batches.


	During training - it calculates batch loss, epoch loss, and epoch history metrics.


	After training - it calculates metrics for each split.




model, history = utils.pytorch.fit(
    # These arguments come directly from `fn_train`
    model
    , loser
    , optimizer

    , train_features
    , train_label
    , eval_features
    , eval_label

    # These arguments are user-defined
    , epochs
    , batch_size
    , enforce_sameSize
    , allow_singleSample
    , metrics
)













	User-Defined Arguments

	Type

	Default

	Description





	epochs

	int

	30

	The number of times to loop
over the features



	batch_size

	int

	5

	Divides features and lables
into chunks to be trained
upon



	enforce_sameSize

	bool

	True

	If True, drops
len(batch!=batch_size)



	allow_singleSample

	bool

	False

	If False, drops
len(batch!=1)



	metrics

	list(torchmetrics.metric())

	None

	List of instantiated
torchmetrics classes
e.g. Accuracy








History Metrics

The goal of the Predictor.history object is to record the training and evaluation metrics at the end of each epic so that they can be interpretted in the learning curve plots. Reference the evaluation section.


	Keras: any metrics=[] specified are automatically added to the History callback object.


	PyTorch: if you use fit seen above, then you don’t need to worry about this. Users are responsible for calculating their own metrics (we recommend the torchmetrics package) and placing them into a history dictionary that mirrors the schema of the Keras history object. Reference the torch examples.





The schema of the history dictionary is as follows: dict(<metric>:ndarray, val_<metric>=ndarray). For example, if you wanted to record the history of the ‘loss’ and ‘accuracy’ metrics manually for PyTorch, you would construct it like so:




history = dict(
    loss           = ndarray
    , val_loss     = ndarray

    , accuracy     = ndarray
    , val_accuracy = ndarray
)







TensorFlow Early Stopping

Early stopping isn’t just about efficiency in reducing the number of epochs. If you’ve specified 300 epochs, there’s a chance your model catches on to the underlying patterns early, say around 75-125 epochs. At this point, there’s also good chance what it learns in the remaining epochs will cause it to overfit on patterns that are specific to the training data, and thereby and lose it’s simplicity/ generalizability.


The metric=val_* prefix refers to the evaluation samples.

Remember, regression does not have accuracy metrics.

TrainingCallback.MetricCutoff is a custom class we wrote to make early stopping easier, so you won’t find information about it in the official Keras documentation.




Placed within fn_train:

from aiqc.utils.tensorflow import TrainingCallback

#Define one or more metrics to monitor.
metrics_cuttoffs = [
    dict(metric='accuracy', cutoff=0.96, above_or_below='above'),
    dict(metric='loss', cutoff=0.1, above_or_below='below')
    dict(metric='val_accuracy', cutoff=0.96, above_or_below='above'),
    dict(metric='val_loss', cutoff=0.1, above_or_below='below')
]
cutoffs = TrainingCallback.MetricCutoff(metrics_cuttoffs)

# Pass it into keras callbacks
model.fit(
    # other fit args
    callbacks = [cutoffs]
)






Tip: try using a val_accuracy threshold by itself for best results







9a. Methods

Assemble an architecture consisting of components defined in functions.

The **hp kwargs are common to every Algorithm function except fn_predict. They are used to systematically pass a dictionary of hyperparameters into these functions. See Hyperparameters.



└── Algorithm.make()

Algorithm.make(
    library
    , analysis_type
    , fn_build
    , fn_train
    , fn_predict
    , fn_lose
    , fn_optimize
)













	Argument

	Type

	Default

	Description





	library

	str

	Required

	‘keras’ or ‘pytorch’
depending on the type of
model defined in
fn_build



	analysis_type

	str

	Required

	‘classification_binary’,
‘classification_multi’, or
‘regression’. Unsupervised/
self-supervised falls under
regression. Used to
determine which performance
metrics are run. Errors if
it is incompatible with the
Label provided: e.g.
classification_binary is
incompatible with an
np.floating Label.column.



	fn_build

	func

	Required

	See below. Build the model
architecture.



	fn_train

	func

	Required

	See below. Train the model.



	fn_predict

	func

	None

	See below. Run the model.



	fn_lose

	func

	None

	See below. Calculate loss.



	fn_optimize

	func

	None

	See below. Optimization
strategy.






Required Functions

def fn_build(
    features_shape:tuple
    , label_shape:tuple
    , **hp:dict
):
    # Define tf/torch model
    return model






The *_shape arguments contain the shape of a single sample, as opposed to a batch or entire dataset. features_shape is plural because it may contain the shape of multiple features. However, if only 1 feature was used then it will not be inside a list.




def fn_train(
    model:object
    , loser:object
    , optimizer:object
    , train_features:ndarray
    , train_label:ndarray
    , eval_features:ndarray
    , eval_label:ndarray
    , **hp:dict
):
    # Define training/ eval loop.
    # See `utils.pytorch.fit`

    # if tensorflow
    return model
    # if torch
    # See `utils.pytorch.fit` and history metrics below
    return history:dict, model





Optional Functions


Where are the defaults for optional functions defined? See utils.tensorflow [https://github.com/aiqc/AIQC/blob/main/aiqc/utils/tensorflow.py] and utils.pytorch [https://github.com/aiqc/AIQC/blob/main/aiqc/utils/pytorch.py] for examples of loss, optimization, and prediction.




def fn_predict(model:object, features:ndarray):
    #if classify. predictions always ordinal, never OHE.
    return prediction, probabilities #both as ndarray

    #if regression
    return prediction #ndarray





def fn_lose(**hp:dict):
    # Define tf/torch loss function
    return loser





def fn_optimize(**hp:dict):
    # Define tf/torch optimizer
    return optimizer







└── Algorithm.get_code()

Returns the strings of the Algorithm functions:

dict(
    fn_build      = aiqc.utils.dill.reveal_code(Algorithm.fn_build)
    , fn_lose     = aiqc.utils.dill.reveal_code(Algorithm.fn_lose)
    , fn_optimize = aiqc.utils.dill.reveal_code(Algorithm.fn_optimize)
    , fn_train    = aiqc.utils.dill.reveal_code(Algorithm.fn_train)
    , fn_predict  = aiqc.utils.dill.reveal_code(Algorithm.fn_predict)
)









9b. Attributes

These are the fields of the Algorithm table







	Attribute

	Type





	library

	CharField



	analysis_type

	CharField



	fn_build

	BlobField



	fn_lose

	BlobField



	fn_optimize

	BlobField



	fn_train

	BlobField



	fn_predict

	BlobField







See #9.-Algorithm for descriptions









10. Hyperparameters

As mentioned in Algorithm, the **hp argument is used to systematically pass hyperparameters into the Algorithm functions.

For example, given the follow set of hyperparamets:

hyperparameters = dict(
    epoch_count     = [30]
    , learning_rate = [0.01]
    , neuron_count  = [24, 48]
)





A grid search would produce the 2 unique Hyperparamcombo’s:

[
    dict(
        epoch_count     = 30
        , learning_rate = 0.01
        , neuron_count  = 24 #<-- varies
    )

    , dict(
        epoch_count     = 30
        , learning_rate = 0.01
        , neuron_count  = 48 #<-- varies
    )
]





We access the current value in our model functions like so: hp['neuron_count'].




10a. Methods

└── Hyperparamset.from_algorithm()

Hyperparamset.from_algorithm(
    algorithm_id
    , hyperparameters
    , search_count
    , search_percent
)













	Argument

	Type

	Default

	Description





	algorithm_id

	int

	Required

	The Algorithm.id whose
functions these
hyperparameters will be
used with



	hyperparameters

	dict(str:list)

	Required

	See example in
Hyperparameters.
Must be JSON compatible.



	search_count

	int

	None

	Randomly select n
hyperparameter combinations
to test. Must be greater
than 1. No upper limit, it
will test all combinations
if number of combinations
is exceeded.



	search_percent

	float

	None

	Given all of the available
hyperparameter
combinations, search x%.
Between 0.0:1.0. Cannot
be used if search_count
is used.







“Bayesian TPE (Tree-structured Parzen Estimator)” via hyperopt has been suggested as a future area to explore, but it does not exist right now.








10b. Attributes

These are the fields of the Hyperparamset table








	Attribute

	Type

	Description





	hyperparameters

	JSONField

	The original
dict(param=list) of all
possible values



	search_count

	IntegerField

	The number of randomly
selected combinations of
hyperparameters



	search_percent

	FloatField

	The percent of randomly
selected combinations of
hyperparameters



	algorithm

	ForeignKeyField

	The Algorithm.id whose
functions these
hyperparameters will be
used with






These are the fields of the Hyperparamcombo table








	Attribute

	Type

	Description





	idx

	IntegerField

	Zero-based counts the
number of the number of
hyperparamcombos



	hyperparameters

	JSONField

	The specific combination of
hyperparameters that will
be fed to the Algorithm
functions



	hyperparamset

	ForeignKeyField

	The Hyperparamset that this
combination of
hyperparameters was derived
from











11. Queue

The Queue is the central object of the “logic side” of the ORM. It ties together everything we need to run training Job’s for hyperparameter tuning. That’s why it is referred to as an Experiment in the High-Level API.




11a. Methods



└── Queue.from_algorithm()

Queue.from_algorithm(
    algorithm_id
    , splitset_id
    , repeat_count
    , permute_count
    , hyperparamset_id
    , description
)













	Argument

	Type

	Default

	Description





	algorithm_id

	int

	Required

	The Algorithm.id whose
functions will be used
during training and
evaluation



	splitset_id

	int

	Required

	The Splitset.id whose
samples will be used during
training and evaluation



	repeat_count

	int

	1

	Each job will be repeat n
times. Designed for use
with random weight
initialization (aka
non-deterministic). This is
why 1 Job has many
Predictors



	permute_count

	int

	3

	Triggers a shuffled
permutation of each
training data column to
determine which columns
have the most impact on
loss in comparison baseline
training loss:
[training loss - (median
loss of <n> permutations)]`
`.
The count determines how
many times the shuffled
permutation is ran before
taking the median loss.
Permutation does *not* get
run on
``Feature.dataset.typ=='ima
ge'.
Set this to 0 if you do not
care about feature
importance. Retroactive
feature importance is
possible via
Prediction.calcFeatureImp
ortance().



	hyperparamset_id

	int

	None

	The Hyperparamset.id
whose samples will be used
during training and
evaluation. This needs to
be specified because an
Algorithm can have many
Hyperparamsets.



	description

	str

	None

	What is unique about this
experiment?








└── Queue.run_jobs()

Jobs are simply ran on a loop on the main process.

Stop the queue with a keyboard interrupt e.g. ctrl+Z/D/C in Python shell or i,i in Jupyter. It is listening for interupts so it will usually stop gracefully. Even if it errors upon during interrupt, it’s not a problem. You can rerun the queue and it will resume on the same job it was running previously.

Queue.run_jobs(id)













	Argument

	Type

	Default

	Description





	id

	int

	Required

	The identifier of the Queue of interest








└── Queue.plot_performance()

Plots every model trained by the queue for comparison.


	X axis = loss


	Y axis = score




Queue.plot_performance(
    id
    , call_display
    , max_loss
    , min_score
    , score_type
    , height
)













	Argument

	Type

	Default

	Description





	id

	int

	Required

	The identifier of the Queue
of interest



	call_display

	bool

	True

	If True, calls
display() on plot. If
False, returns Plotly
figure object.



	max_loss

	float

	None

	Models with any split with
higher loss than this
threshold will not be
plotted.



	min_score

	typ

	None

	Models with any split with
a lower score than this
threshold will not be
plotted.



	score_type

	typ

	None

	Defaults to "accuracy"
for classification
analysis, and "r2" for
regression analysis. See
aiqc.utils.meter [https://github.com/aiqc/AIQC/blob/main/aiqc/utils/meter.py]
for available metrics.



	height

	typ

	None

	Default height is 560
but you can force it to be
taller








└── Queue.metrics_df()

Displays metrics for every split/fold of every model.

Queue.metrics_df(
    id
    , selected_metrics
    , sort_by
    , ascending
)













	Argument

	Type

	Default

	Description





	id

	int

	Required

	The identifier of the Queue
of interest



	ascending

	typ

	False

	Descending if False.



	selected_metrics

	list(str)

	None

	If you get overwhelmed by
the variety of metrics
returned, then you can
include the ones you want
selectively by name.



	sort_by

	str

	None

	You can sort the dataframe
by any column name.








└── Queue.metricsAggregate_df()

Aggregate statistics about every metric of every model trained in the Queue – displays the average, median, standard deviation, minimum, and maximum across all splits/folds.

Queue.metricsAggregate_df(
    id
    , ascending        = False
    , selected_metrics = None
    , selected_stats   = None
    , sort_by          = None
)













	Argument

	Type

	Default

	Description





	id

	int

	Required

	The identifier of the Queue
of interest



	ascending

	typ

	False

	Descending if False.



	selected_metrics

	list(str)

	None

	If you get overwhelmed by
the variety of metrics
returned, then you can
include the ones you want
selectively by name.



	sort_by

	str

	None

	You can sort the dataframe
by any column name.










11b. Attributes

These are the fields of the Queue table








	Attribute

	Type

	Description





	repeat_count

	IntegerField

	The number of times to
repeat each Job.



	total_runs

	IntegerField

	The total number of models
to be trained as a result
of this queue being
created.



	permute_count

	IntegerField

	Number of permutations to
run on each column before
taking the median impact on
loss. 0 means permutation
was skipped.



	runs_completed

	IntegerField

	Counts the runs that have
actually finished



	algorithm

	ForeignKeyField

	The model functions to use
during training and
evaluation



	splitset

	ForeignKeyField

	The pipeline of samples to
feed to the models during
training and evaluation



	hyperparamset

	ForeignKeyField

	Contains all of the
hyperparameters to be used
for the Jobs











12. Job

The Queue spawns Job’s. A Job is like a spec/ manifest for training a model. It may be repeated.

# jobs = Hyperamset.hyperamcombo.count() * Queue.repeat_count * splitset.folds.count()




12a. Methods

There are no noteworthy, user-facing methods for the Job class





12b. Attributes

These are the fields of the Job table








	Attribute

	Type

	Description





	repeat_count

	IntegerField

	The number of times this Job is to be repeated



	queue

	ForeignKeyField

	The Queue this Job was created by



	hyperparamcombo

	ForeignKeyField

	The parameters this Job uses



	fold

	ForeignKeyField

	The cross-validation samples that this Job uses











13. Predictor

As the Jobs finish, they save the model and history metrics within a Predictor object.




13a. Methods

└── Predictor.get_model()

predictor.get_model(id)





Handles fetching and initializing the model (and PyTorch optimizer) from Predictor.model_file and Predictor.input_shapes









	Argument

	Type

	Default

	Description





	id

	int

	None

	The identifier of the Predictor of interest








└── Predictor.get_hyperparameters()

This is a shortcut to fetch the hyperparameters used to train this specific model. as_pandas toggles between dict() and DataFrame.

Predictor.get_hyperparameters(id, as_pandas)













	Argument

	Type

	Default

	Description





	id

	int

	None

	The identifier of the
Predictor of interest



	as_pandas

	bool

	True

	If True, returns a
DataFrame. If False,
returns a
list(dict(param_name=[val
ues]))








└── Predictor.plot_learning_curve()

A learning curve will be generated for each train-evaluation pair of metrics in the Predictor.history dictionary

Predictor.plot_learning_curve(
    id
    , skip_head
    , call_display
)













	Argument

	Type

	Default

	Description





	id

	int

	None

	The identifier of the
Predictor of interest



	skip_head

	bool

	True

	Skips displaying the first
15% of epochs. Loss values
in the first few epochs can
often be extremely high
before they plummet and
become more gradual. This
really stretches out the
graph and makes it hard to
see if the evaluation set
is diverging or not.



	call_display

	bool

	True

	If True, calls
display() on plot. If
False, returns Plotly
figure object(s).










13b. Attributes

These are the fields of the Predictor table








	Attribute

	Type

	Description





	repeat_index

	IntegerField

	Counts how many predictors
have been trained using a
Job spec



	time_started

	DateTimeField

	When the Job started



	time_succeeded

	DateTimeField

	When the Job finished



	time_duration

	IntegerField

	Total time in seconds it
took to complete the Job



	model_file

	BlobField

	Contains a dilled (advanced
Pickle) of the trained
model. See
Predictor.get_model()
for exporting.



	features_shapes

	PickleField

	tuple or list of tuples
containing the np.shape(s)
of feature(s)



	label_shape

	PickleField

	tuple containing np.shape
of a single sample’s label



	history

	JSONField

	Contains the training
history loss/metrics



	is_starred

	BooleanField

	Flag denoting if this model
is of interest



	job

	ForeignKeyField

	The Job that trained this
Predictor











14. Prediction

When data is fed through a Predictor, you get a Prediction. During training, Predictions are automatically generated for every split/fold in the Queue.splitset.




14a. Methods

└── Prediction.calc_featureImportance()

This method is provided for conducting feature importance after training. It was decoupled from training for the following reasons:


	Permutation is computationally expensive, especially for many-columned datasets.


	We don’t care about the feature importance of our best models.




What data is used when calculating feature importance? All splits/folds are concatenated back into a single dataset. This assumes that all splits/folds are relatively equally balanced with respect to their label values. For example, if you have unbalanced multi-labels (55:35:10 distribution of classes) then a given feature’s importance may be biased based on how well it predicts the larger class. For binary classification scenarios, this should not matter as much since predicting one class also
helps in predicting the opposite class.

Upon completion it will update the Prediction.feature_importance and Prediction.permute_count attributes.

Prediction.calc_featureImportance(id, permute_count)













	Argument

	Type

	Default

	Description





	id

	int

	None

	The identifier of the
Prediction of interest



	permute_count

	int

	Required

	The count determines how
many times the shuffled
permutation is ran before
taking the median loss.
[training loss - (median
loss of <n> permutations)]`
`
Permutation *skips*
``Feature.dataset.typ=='ima
ge'.








└── Prediction.importance_df()

Returns a dataframe of feature columns ranked by their median importance

Prediction.importance_df(id, top_n, feature_id)













	Argument

	Type

	Default

	Description





	id

	int

	None

	The identifier of the Prediction of interest



	top_n

	int

	None

	The number of columns to return



	feature_id

	int

	None

	Limit returned columns to a specific feature identifier








└── Prediction.plot_feature_importance()

Plots prediction.feature_importance if Queue.permute_count>0 or Prediction.calc_featureImportance() was ran after the fact.

Prediction.plot_feature_importance(
    id
    , call_display
    , top_n
    , height
    , margin_left
)













	Argument

	Type

	Default

	Description





	id

	int

	None

	The identifier of the
Prediction of interest



	call_display

	bool

	True

	If True, calls
display() on plot. If
False, returns Plotly
figure object.



	top_n

	int

	10

	The number of features to
display. If greater than
the actual number of
features, it just returns
all features.



	boxpoints

	object

	False

	Determines how whiskers,
outliers, and points are
shown. Options are:
False, 'all',
'suspectedoutliers',
and 'outliers'.
Reference Plotly Box
Plots [https://plotly.com/python/box-plots/].



	height

	int

	None

	If None, dynamically
makes the plot taller to
fit all of the columns



	margin_left

	int

	None

	If None, dynamically
makes the y axis margin
wider the longest column
name








└── Prediction.plot_roc_curve()

Receiver operating curve (ROC) for classification metrics.

Prediction.plot_roc_curve(id, call_display)













	Argument

	Type

	Default

	Description





	id

	int

	None

	The identifier of the
Prediction of interest



	call_display

	bool

	True

	If True, calls
display() on plot. If
False, returns Plotly
figure object.








└── Prediction.plot_precision_recall()

Precision/recall curve for classification metrics.

Prediction.plot_precision_recall(id, call_display)













	Argument

	Type

	Default

	Description





	id

	int

	None

	The identifier of the
Prediction of interest



	call_display

	bool

	True

	If True, calls
display() on plot. If
False, returns Plotly
figure object.








└── Prediction.plot_confusion_matrix()

Confusion matrices for classification metrics.

Prediction.plot_confusion_matrix(id, call_display)













	Argument

	Type

	Default

	Description





	id

	int

	None

	The identifier of the
Prediction of interest



	call_display

	bool

	True

	If True, calls
display() on plot. If
False, returns Plotly
figure object(s).








└── Prediction.plot_confidence()

Plot the binary/multi-label classification probabilities for a single sample.

Prediction.plot_confidence(
    id,
    , prediction_index
    , height
    , call_display
    , split_name
)













	Argument

	Type

	Default

	Description





	id

	int

	None

	The identifier of the
Prediction of interest



	prediction_index

	int

	0

	The index of the sample of
interest



	height

	int

	175

	Force the height of the
chart.



	call_display

	bool

	True

	If True, returns a
DataFrame. If False,
returns a
list(dict(param_name=[val
ues]))



	split_name

	int

	None

	The identifier of the
Prediction of interest










14b. Attributes








	Attribute

	Type

	Description





	predictions

	PickleField

	Decoded predictions ndarray
for per split/ fold/
inference



	permute_count

	IntegerField

	The number of times this
feature importance permuted
each column



	feature_importance

	JSONField

	Importance of each column.
Only calculated for
training split/fold.
Schema:
dict(str(feature.id)=dict
(median=float,loss_impacts=
list(float)))



	probabilities

	PickleField

	Prediction probabilities
per split/ fold. None
for regression. Schema:
dict(split=ndarray)



	metrics

	PickleField

	Statistics for each
split/fold that vary based
on the analysis_type.



	metrics_aggregate

	PickleField

	Contains the average,
median, standard deviation,
minimum, and maximum for
each statistic across all
splits/folds.



	plot_data

	PickleField

	Metrics reformatted for
plot functions.











Evaluation

To see the visualization of performance metrics of Queue, Predictor and Prediction in action – reference the Evaluation documentation.
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Datasets

[image: db897df54332413294d1743ffc4ca6a6]


Overview

This notebook contains information about the prepackaged datasets that are referenced throughout the documentation. These datasets are either:


	Included directly within the AIQC Python package itself (KB) [https:/github.com/aiqc/AIQC/tree/main/aiqc/data]


	Stored remotely in the AIQC GitHub repository (MB) [https://github.com/aiqc/AIQC/tree/main/remote_datum/image]








Prerequisites

If you’ve already completed the instructions on the Installation page, then let’s get started.


[2]:





from aiqc import datum







The module for interacting with the datasets is called datum so that it does not overlap with commonly used names like ‘data’ or ‘datasets’.





Prepackaged Local Data

The list_datums() method provides metadata about each of file that is included in the package, so that you can find one that suits your purposes.


By default it returns a Pandas DataFrame, but you can list_datums(format='list') to change that.





[3]:





datum.list_datums()








[3]:
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[image: 3778a62100be4e3f8925606ca22d5ad6]


Overview

Every training Job automatically generates metrics when evaluated against each split/ fold.

All Analyses

Loss is every neural network’s measure of overall prediction error. The lower the loss, the better. However, it’s not really intuitive for humans, which is why analysis specific metrics like accuracy and R² are necessary.







	Metrics

	loss



	Plots

	boomerang plot, learning curve, feature importance






Classification

Although 'classification_multi' and 'classification_binary' share the same metrics and plots, they go about producing these artifacts differently: e.g. ROC curves roc_multi_class=None vs roc_multi_class='ovr'.







	Metrics

	accuracy, f1, roc_auc,
precision, recall,
probabilities



	Plots

	ROC-AUC, precision-recall,
confusion matrix, sigmoid/
pie probabilities






Regression

Does not have an 'accuracy' metric, so we default to 'r2', R² (coefficient of determination, as a guage of effectiveness. There are no regression-specific plots in AIQC yet. Note that, as a quantitative measure of similarity, unsupervised/ self-supervised models are also considered a regression.







	Metrics

	r2, mse, explained_variance








Dashboard Arguments

In order to accomodate the dashboards, the following arguments were added:


	call_display:bool=True when True, performs figure.display(). Whereas when False, it returns the raw Plotly figure object. The learning curve, feature importance, and confusion matrix functions return list(figs).


	height:int=None pixel-based adjustment for boomerang chart and feature importance.





The actual arguments of the methods in this in this notebook are documented in the Low-Level Docs,








Prerequisites

Plotly is used for interactive charts (hover, toggle, zoom). Reference the Installation section for information about configuring Plotly. However, static images are used in this notebook due to lack of support for 3rd party JS in the documentation portal.

We’ll use the datum and tests modules to rapidly generate a couple examples.


[2]:





from aiqc import datum
from aiqc import tests











Classification

Let’s quickly generate a trained classification model to inspect.


[3]:





%%capture
queue_multiclass = tests.tf_multi_tab.make_queue()
queue_multiclass.run_jobs()








Queue Visualization

plot_performance aka the boomerang chart [https://medium.com/towards-data-science/boomerang-plot-9ae4aed419d4] is unique to AIQC, and it really brings the benefits of the library to light. Each model from the Queue is evaluated against all splits/ folds.

When evaluating a classification-based Queue.analysis_type, the following score_type:str are available: accuracy, f1, roc_auc, precision, and recall.


[ ]:





queue_multiclass.plot_performance(
    max_loss = 1.5, score_type='accuracy', min_score = 0.70
)







[image: Classify Boomerang]



Queue Metrics


[5]:





queue_multiclass.metrics_df(
    selected_metrics = None
    , sort_by        = 'predictor_id'
    , ascending      = True
).head(6)








[5]:
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Deep Learning 101

Boiling down a neural network to its fundamental concepts.
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[image: ../_images/genomics.png]







Why Does AIQC Exist?

Over the past 4 years, I worked with the top 5 pharmaceutical companies to analyze national biobanks, such as the UK Biobank and Genomics Medicine Ireland, for the genomic-drivers of complex diseases.

In the face of such challenging & important problems, I was shocked that big pharma’s primary form of analysis was the basic statistical test known as an association study, which dates back to the Victorian era [https://en.wikipedia.org/wiki/Francis_Galton#Correlation_and_regression]. I kept expecting someone to say, “Okay, now is the time for us to start using deep learning,” but it never happened. If the researchers at the most well-financed companies in the world weren’t equipped to take advantage of AI, then how would it ever be possible for non-profit scientists?

Deep learning has the power to accelerate the rate of scientific discovery by acting as a torch that reveals the laws of nature through data-driven pattern recognition. When it comes to global crises like combatting pandemics and reversing climate catastrophe, the human race is at a point where it needs to make major scientific advances over a short period of time in order to survive. So let’s empower our smartest people with the best analytical tools we have.









1. Accelerate science by making deep learning accessible.


	Reduce the amount of programming and data science know-how required to perform deep learning. This unattainable skillset trifecta causes machine learning to be underutilized in science. What would Newton & Einstein have discovered with the power of deep learning?


	Provide field-specific deep learning solutions for research in the form of: pipelines for preprocessing scientific file formats, pre-trained models for transfer learning, and visualizations of predictions.












2. Bring the scientific method to data science.


	Make machine learning less of a black box by implementing “Quality control (QC)” protocols comprised of best practice validation rules.


	Reproducibly record not only the machine learning experiments, but also the lineage for preparing data. This is important for combatting bias during the data gathering and evaluation phases.












3. Break down walled gardens to keep science open.


	This toolset provides research teams a standardized method for ML-based evidence, as opposed to each research team cobbling together their own approach. An AIQC file should be submitted alongside publications and model zoo entries as a proof.


	The majority of research doesn’t happen in the cloud, it’s performed on the personal computers of individuals. We empower the non-cloud researchers: the academic/ institute HPCers, the remote server SSH’ers, and everyday laptop warriors.


	If the entire scientific community does not have access to the toolset used to conduct the experiment, then it is not reproducible.



















	Kennedy - Peace; our survival demands unified, systematic action. [https://youtu.be/0fkKnfk4k40?t=368]


	Kennedy - Moon; lead the advancement of science for the good of mankind. [https://youtu.be/WZyRbnpGyzQ?t=183]
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PyTorch: Tabular Classify Binary

Detecting Naval Mines with Binary Classification of Sonar Data.

[image: 70282e5fbb5046ebb37d912634785c7e]


💾 Data

Reference Example Datasets for more information.

This dataset is comprised of:


	Features = sonar readings that have been bounced off a distant object.


	Label = either a rock or metal structure (potentially a naval mine).





[3]:





from aiqc import datum
df = datum.to_df('sonar.csv')








[4]:





from aiqc.orm import Dataset
shared_dataset = Dataset.Tabular.from_df(df)
df.sample(5)








[4]:
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PyTorch: Image Classify Binary

Brain Tumor Detection via Binary Classification of Magnetic Resonance Imaging (MRI) Scans

[image: cf778459ac8d4d71969bc2699845665d]


Example Data

Reference Example Datasets for more information.

This dataset is comprised of:


	Features = folder of magnetic resonance imaging (MRI) of brain samples.


	Labels = tabular data denoting the presence of a tumor.





[3]:





from aiqc import datum
from aiqc.orm import Dataset








[4]:





df = datum.to_df('brain_tumor.csv')
dataset_label = Dataset.Tabular.from_df(df)








[5]:





dataset_label.to_df().head(3)








[5]:
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PyTorch: Tabular Classify Multi-Label

Categorizing Plant Species with Multi-Label Classification of Phenotypes.

[image: ac34a0b622ca4d13ac6cfc791e8a233a]


💾 Data

Reference Example Datasets for more information.

This dataset is comprised of:


	Label = the species of the plant.


	Features = phenotypes of the plant sample.




Reference Example Datasets for more information.


[2]:





from aiqc import datum
df = datum.to_df('iris.tsv')








[3]:





from aiqc.orm import Dataset
shared_dataset = Dataset.Tabular.from_df(df)
df.sample(3)








[3]:
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PyTorch: Tabular Regression

Predicting Exoplanet Surface Temperature Using Kepler Satellite Sensor Data.

[image: ac412ea63ad2471ebc0e80cb30c561fc]


💾 Data

Reference Example Datasets for more information.

This dataset is comprised of:


	Features = characteristics of the planet in the context of its solar system.


	Label = the temperature of the planet.





[2]:





from aiqc import datum
df = datum.to_df('exoplanets.parquet')








[3]:





from aiqc.orm import Dataset
shared_dataset = Dataset.Tabular.from_df(df)
df.sample(5)








[3]:
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PyTorch: Times Series Classify Binary

Binary Detection of Epileptic Seizures Using a Cohort of Sequence of Electroencephalography (EEG) Readings.

[image: eb0f4b1d007645caa0cff5093deefe82]

Sequence data structures contain many observations (rows) for each sample (e.g. site, sensor, or patient). They are often used for grouping time-based observations into what is called a time series. However, sequences can also represent biological sequences like DNA and RNA.

The cardinality of many observations per sample changes the dimensionality of the data from 2D to 3D. This effectively adds an additional layer of complexity to all aspects of data preparation. In this notebook, you’ll see that, once a Dataset.Sequence has been ingested, the AIQC API allows you to work with multivariate 3D data as easily as if it were 2D. As an example, you can still apply encoders by dtype and column_name.




💾 Data

Reference Example Datasets for more information.

This dataset is comprised of:


